
1

UML 2 Activity Modeling
for Domain Experts

Conrad Bock
NIST

conrad.bock@nist.gov

2

Overview
UML for knowledge capture.
Input to UML 2 Activities.
UML 2 Activity elements.
Systems engineering extensions.

3

UML For Domain Experts
UML began as a language for domain
experts to record their knowledge.
Experts in electric motors design
expressed concepts in diagrams, …
… which automatically generated
database table definitions.
3000% productivity improvement
over informal textual descriptions.
“Model Driven Design,” Cocks, D., Dickerson, M., Oliver, D., Skipper, J., INCOSE INSIGHT, 7:2, July
2004.

4

UML For CIM/Analysis
Computation-Independent Modeling =
Analysis …
… as in “Analysis and Design Task Force”.
Early stages of software development
capture end-user concepts (“analysis”) ...
… before later stages choose how these
are represented in software (“design”).
Many diagrams shared between analysis
and design (class, composition, behavior).

5

UML For System Engineering
SE specifications are agnostic about how they are
implemented, in organizations, hardware, or
software.
Capture domain expert requirements, rather than
how they will be satisfied.
Executable models for over 15 years.
UML is increasingly the major modeling language
used in SE and military architecture communities.
UML Profile for SE submitted.
“Systems Modeling Language (SysML) Specification,” SysML Submission Team, http://doc.omg.org/ad/05-11-01, November 2005.
“Systems Engineering in the Product Lifecycle,” Bock, C., International Journal of Product Development, 2:1-2,
http://www.nist.gov/msidlibrary/doc/sysmlplm.pdf, 2005.
“UML Profile for DoDAF/MODAF (UPDM),” OMG, http://doc.omg.org/dtc/05-09-12, September 2005.

6

UML For Ontology
Ontology languages becoming popular for
expressing domain expert concepts.
Enable automated consistency checking.
UML has significant overlap with OL’s …
… eg, classes, properties, subclasses,
subproperties, disjointness, and others.
Many aspects of OL’s are specialized
kinds of constraints.
UML Profile for RDFS and OWL submitted.
“Ontology Definition Metamodel,” IBM, Sandpiper, http://doc.omg.org/ad/2005-09-08, November 2005.

7

UML for Business Modeling
Foundation concepts for BM
– Things (“classes”, “objects”, “entities”)

• For documents, people, resources, etc.
– Structured/assembled things

• For organizations, structured entities.
– Dynamics

• For processes, collaboration, event
monitoring.

Continuity with other UML-based
knowledge capture, and with IT
implementation.
Business Modeling with UML : Business Patterns at Work, Eriksson, H., Penkerbook, M., Wiley, January 2000.

8

UML for Process Knowledge
UML includes three ways to express
knowledge about dynamics …
… each addressing different aspects:
– Output to input dependencies (Activities)
– Reaction to events (State Machines)
– Message-passing (Interactions)

… but also overlapping:
– Sequencing, conditionals, concurrency.

Virtual machines defined for execution.

9

Integrated Models

Accept_deposit

Account

Amount

Amount

Get
Balance

+

Set
Balance

Activity / SM
(tasks, process,
orchestration)

Structure
(assembly,
organization,
interconnections)

Car

fa : Axle front : Wheel

h : Hubos : AxleOutputShaft

t : Tire

: powers: powers

ms : MainAxleShaft

uj : UniversalJoint

: powers

: powers

sd example

ob4:C4

doit(z)()

ob2:C2

doit(z)()

ob3:C3

doit(w)()

doit(w)()

ob1:C1

create()

foo(x)()

foo(x)()

bar(x)()

bar(x)()

more()

more()
opti()

opti()

[x>0]

[else]

alt

Interaction
(messages, choreography,
collaboration)

External
Input

External
Output

1. Serial
Function

2. Multi-exit
Function

3. Function in
Concurrency

Data 1

4. Function in
Multi-exit
Construct

5. Function in
an Iterate

[before third time]
Data 2

[

e
l
s
e
]

6. Output
Function

Data 3
Data 5

Data 4

Activity / SM

10

Integration with UML 1.5
Action / Procedure Model
“Action Semantics”.
Activities fully executable.
Covers the full range of flow models
from flow charts to code.
More about this later.

OMG Unified Modeling Language Specification, OMG, Version 1.5,
http://doc.omg.org/formal/03-03-01, September 2002.

11

More Than Pictures
Repository provides
– API’s
– XML interchange
– Support for multiple notations

UML notation stores to repository
… and alternate notations can, too.

Generate systems from repository:
Notation Repository System

12

Repository-Centered

Actual system

Model compilation

Parsing

Repository

Presentation

Amount function Accept_deposit
(a : Account, d : Amount)

{
Amount nb = a.balance + d;
a.balance = nb;
return nb;

}

Accept_deposit

Account

Amount
Amount

Get
Balance

+

Set
Balance

13

Input to UML 2 Activities
First workflow RFP discussion (HP,
FileNet, NIST)
SAP, Oracle, IBM
EDOC, BPML, WPDL, BPEL (WSFL,
XLANG), ebXML
CaseWise, Odell and Associates,
IntelliCorp.
And others.

14

Production order
is to be released

Production order
is created

or changed

Opening /
processing

production order

Release of
production order

[release is
refused]

Backorder
processing

[parts missing]

Event!

State!

Execution of
production order

Preliminary
costing for

production order

[production order not
to be carried out]

[prod. order was not planned
(by this lot size) or
external services are required]

Not visible (no user interface),
if multiple planned orders are
converted into production
orders

Production order
is to be changed

Usually the planning of production
orders should create the purchase
req. for external material.

Purchase
Requisition
[created]

[parts missing]

Production order
is (partially)

released

printout of
production

order

production order
is to be printed

production order is
to be executed

Planned resources
(parts, tools and human
labor) are to be freed!

It might be irrelevant (depending on the
responsible person and not on the IT
system) whether the backorder processing
succeeds in getting the missing parts: Parts
may still be missing when the execution of
this production order is started. This
execution may last for a week, or even
longer. In between the missing parts may
arrive or be produced.

possible result of
"Opening / processing
production order"

Thread is
started, iff

parts missing

{ Material is
produced }

resulting
state{ Material is

not produced }

resulting
state

Example from SAP

 SAP AG 1998 O. Wiegert: BPM & WF Definition with UML 03/31/1998 / 14 SAP AG 1998 O. Wiegert: BPM & WF Definition with UML 03/31/1998 / 14

“Business Process Modeling &
Workflow Definition with UML,
Deficiencies & Actions to Improve,”
Wiegert, O., http://doc.omg.org/ad/98-
04-04, April 1998.

15

Example from HP
Start

End

ERR Load

ERR Load error

ERR Load Re-do Timer

Preapproval
Decision

No action timer
Notify Approver

Check DecisionNotify
error
Timer

Approval Decision

Service
error

Service error
Timer Reject

Check Reject

Notify no action Submit for Approval

Submit error Timer

Service
Approval

Check
Service Reject

error

Reject error
Timer

Notify Reject
Notify
Reject
Timer

Cancel
Transaction
Timer

No action
Timer

Check Notify

Check Notify

Cancel
Service

Check Cancel

Handle Cancel
error

Cancel Timer

“HP EER Workflow Example,” Matheson. D.,
http://doc.omg.org/bom-00-01-06, January 2000.

16

Feature U2P AM CaseWise BPML EDOC WPDL-XML WSFL XLANG ebXML/ebTWG

General
Graphical notation Y Y Not yet Nonnormative N N (only for

explanation in
spec)

N Y (UML 1.x
activity graphs)

Metamodel Y N (not
exportable
anyway)

Not yet Y Y (not in
UML)

N (but spec is
written so that
it could)

N Y(Stereotypes
of UML 1.x)

XML - any Y N Y Y Y Y Y Y (XMI,
presumably)

Human usable textual
notation.

N N Y (XML) Not yet Y (tags not
too complex)

Y (tags not too
complex)

Y (XML) N

General Process
Features
Message or control/data
flow model?

Control/Data Control/Data Message Data Control (with
parameters)

Control/Data
(message
data only)

Message Control/Data
(UML 1.x
activities)

Data and control on
same diagram/model

Y (shown by
usage in
notation)

N NA NA NA NA (shown by
solid/dotted in
spec)

NA Y

Business-specific
features

N Y (eg,
location)

N N Y (eg,
responsible
party, manual
activity, cost,
etc)

N (but relates
to WSDL)

N (but
extends
WSDL)

Y (stereotypes)

Activity - actor link N (but has
hook)

Y Y Y Y Y Y Y

Activity - artifact link N (but has
hook)

N N Y Y N N Y

Simplified subsets of
functionality defined

Y (well-nested,
flowchart)

N N N Y (well-
nested,
acyclic)

N N N

Simulation-specific
information

N Y (a little for
branching)

N N Y (timing
attributes)

N N N

Transaction model N N Y N (very little) N (activities
are atomic)

N Y Y

Detailed Process
Features
Pin model Y N N Y N N (uses a

single
message
input/output)

N N

Objectflow "in the
middle" model

Y Y N N N N N Y (UML 1.x
semantics)

Explicit control
constructs

Y N (guards for
conditionals)

Y (uses
message
consumption for
conditionals)

N (uses
alternate
output sets)

Y/N (part of
invocation,
guards)

N Y (switch
only, uses
"Qname" for
conditionals)

Y (but often
uses guards on
transitions)

"else" functionality for
conditionals

Y N N NA Y N N Y

Explicit merge construct Y N N? N (could use
alternate input
sets)

Y? (XOR
enforced?)

N N Y

Optional inputs N N N Y (alternate
input sets)

N N N N

Optional outputs Y (part of
asych outputs)

Y (in control
only)

N Y (alternate
output sets)

N N N N

Alternative input/output
sets

N Y (in control
only)

N Y N N N N

Asynchronous
inputs/outputs

Y N N Y N N N N

Fork/join functionality Y Y Y (flexible join
using named
spawn)

Y Y (part of
invocation,
guards)

Y (part of
invocation,
guards)

Y (well-
nested only)

Y (but has
semantic
problems)

17

Exclusive/complex join

{a xor b}
a

b

{ F(a,b) }
a

b

Feature U2P AM CaseWise BPML EDOC WPDL-XML WSFL XLANG ebXML/ebTWG
Exclusive join
functionality

Y, (late flows
ignored)

N N N Y? (spec is
ambiguous)

Y (late flows
ignored)

N N

Complex joins Y N N N N Y N N

18

Error handling

 U2P AM CaseWise BPML EDOC WPDL-XML WSFL XLANG ebXML/ebTWG
Y
(exception
outputs)

N Y (compensation
for completed
activity called by
an aborted
activity)

Y (exception
outputs)

N Y (as part
of data)

Y (compensation
for completed
activity called by
an aborted
activity)

Y

Handle Error

on cancel

19

Asynchronous invocation

a b c

x y z

 U2P AM CaseWise BPML EDOC WPDL-XML WSFL XLANG ebXML/ebTWG
Y (for
operations,
signals, not
subactivities)

N Y (implements
synch as two
asych)

N Y (for
subactivities
only)

N Y (WSDL
operations)

Y

20

Process instances

Process definition

Process Execution

Process instances

.

.

.

 U2P AM CaseWise BPML EDOC WPDL-XML WSFL XLANG ebXML/ebTWG
Y (structual
features only,
but extensible)

N N Y (scenario
only)

N (but may
through
interop
standard)

N Y (identifier only,
with mapping to
messages)

N

21

Activity Modeling
Activity modeling emphasizes the
output/input dependencies, sequencing,
and conditions for coordinating other
behaviors.
Uses secondary constructs to show
which classifiers are responsible for
those behaviors.
Focus is on what tasks need to be done,
with what inputs, in what order, rather
than who/what performs each task.

22

Activity Modeling
Tasks and ordering …

Fill
Order

Ship
Order

Send
Invoice

Accept
Payment

Close
Order

Make
Payment

[order
accepted]

Invoice

Receive
Order

23

… plus resource assignments.

Activity Modeling
«e

xt
er

na
l»

«a
ttr

ib
ut

e»
pe

rf
or

m
in

gD
ep

t:
D

ep
ar

tm
en

t»

C
us

to
m

er
A

cc
tg

D
ep

ar
tm

en
t

O
rd

er
 D

ep
ar

tm
en

t

Fill
Order

Ship
Order

Send
Invoice

Accept
Payment

Close
Order

Make
Payment

[order
accepted]

Invoice

Receive
Order

Partition (notation is called a “swimlane”)

24

Activity Elements

Fill
Order

Ship
Order

Send
Invoice

Accept
Payment

Close
Order

Make
Payment

[order
accepted]

Invoice

Receive
Order

Action (uses of
other activities / tasks)

Control Node
(routing control and objects)Edge/Flow

(execution dependencies)

Object Node (queuing
outputs and inputs)

25

“Flow” semantics

Activity execution defined in terms of
flow of control and objects/data.

Fill
Order

Ship
Order

Send
Invoice

Accept
Payment

Close
Order

Make
Payment

[order
accepted]

Invoice

Receive
Order

(not UML notation)

26

Actions and Object Nodes
Accept inputs, start behaviors,
provide outputs.

Send
Invoice

Accept
Payment

Make
Payment

Invoice

Output provided when
action is complete.

Sequencing: control
“flows” when action
is complete.

Action starts when
input arrives.

Invoice2345
: Invoice

Invoice2345
: Invoice

27

Actions and Object Nodes
Alternate object node notation (pin).

Make
Payment

Action provides values to
output pin.

Action accepts values
arriving at pin.

Send
Invoice

Accept
Payment

No pins for control
(usually).

Must use this notation if the output type is different than the
input type. The underlying repository stores pins.

Invoice2345
: Invoice

Invoice2345
: Invoice

28

Tokens can
– stack up in “in/out” boxes
– backup in network
– prevent upstream behaviors from taking new inputs

Applicable to systems with significant
resource constraints, such as physical or
manual processes.

Queuing

Machine
Part Polish Part Package Part

29

Queuing

Tokens can be
– Stored temporarily
– Divided between flows

Tokens cannot
– Flow in more than one direction, unless

copied.

Machine
Part

Test Part

<<centralBuffer>>

Part

Polish Part

Machine
Part

30

Activity Parameter Nodes

Parameter nodes accept and provide values
to/from whatever behavior uses this activity.

Accept_deposit

Account

Amount
Amount

Get
Balance

+

Set
Balance

Activity Parameter Node
(uses of objects/data, a kind of
object node)

31

{ stream }{ stream }

Values accepted and provided while
action is executing.

Streaming Parameters

Generate
Leads

Process
Leads

Lead

Executing

Not
Executing

Time

Inputs
accepted

Inputs
accepted

Outputs
provided

Inputs
accepted

Outputs
provided

Outputs
provided

32

Exception Parameters
Outputs that are exclusive of others,
and aborts the activity.

33

Parameter Sets
Parameters accepting input or
providing output exclusive of each
other (for each execution).

34

Control Nodes
Route objects/data
At beginning and end of activity:

Activity Final

Initial Node
Gets control when containing
activity starts. Flows out
immediately.

Flow Final

Accepts input, aborts containing
activity.

Accepts input, does
nothing.

35

Control Nodes
Route objects/data
In middle of activity:

Decision

Fork

Merge

Join

Flows out in exactly one
direction.

Flows through immediately.
Does not combine the tokens.

Copies inflow to multiple multiple
outflows.

Flows out when all inflows
arrive. Combine tokens when
possible.

36

Interruptible Region
Flows abort region.

Fill
Order

Ship
Order

Send
Invoice

Accept
Payment

Close
Order

Make
Payment

[order
accepted]

Invoice

Receive
Order

Cancel
Order

Request
Cancel

Interrupting Edge

Interruptible
Region

37

Reentrant Activities

No token interaction.
For domains without resource
constraint, such as computation.

Amount function update_account
(a : Account, d : Amount)

{
Amount nb = a.balance + d;
a.balance = nb;
send_notice (a.customer, a, nb);
return nb;

}

38

Reentrant Activities

update_account

Account

Deposit
Amount

Get
Balance

+

Set
Balance

Send
NoticeGet

Customer

39

Time Model
Can be used to state constraints on
processes:

Move
Elevator

Close
Doors

< 2 sec

40

First-class Behavior Model
Object-orientation not required to
model dynamics …
… but supported when needed.
Flexibility in using/not using:
– Behaviors owned by objects.
– Messages and Polymorphism

Integrate with OO for:
– Relating internal execution to

exchanges with between partners.
– Transformation to implementation

41

First-class Behavior Model

POEmployee

sortMail()
deliverMail()

Check Out
Truck

Put Mail
In Boxes

Deliver Mail

Keys

Deliver Mail

HowLong : Time

Abort()

Truck
10..1

resource

42

Full Action Model
Kinds of actions include:
– Invoking behaviors/functions.
– Creating/destroying objects.
– Getting/setting property values.
– Structured nodes (conditionals, etc).
– Exception handling.

For fully-executable models and
simulations.

43

SE Extensions
Control as Data
– Enabling and disabling control values.
– Output from activities to turn other

behaviors “on” and “off”.
Rate of flow, on edges and streaming
parameters.
Reduce buffering
– Overwrite values already in buffer
– Turn off buffering

Probability on decisions, parameter
sets, competing outflows from object
node.
Behavior decomposition.

44

«controlOperator»
Monitor

Temperature

Rate and Buffer Reduction

Heat Air

ControlValue
{ stream }

{ rate < 1 per 10 minutes }

«controlOperator»
Monitor Temperature

{ stream }

«ValueSpecificationAction»
enable

ControlValue

[else]

[above
threshold]

«ValueSpecificationAction»
disable

Measure
Temperature

{ stream }
Temperature

Calculate
Feels-like Temperature

Measure Temperature

Temperature

Receive
Temperature

Receive
Humidity

Temperature

Humidity

«noBuffer»

{ rate =
1 per second }

«continuous»

{ stream }

45

Activity Decomposition

«activity»
Monitor

Temperature

«activity»
Heat Air

«activity»
Maintain

Temperature

calculateTraction
[0..1]

maintainTemperature
[1..1]

maintainTemperature
[1..1]

heating
[0..1]

monitorTemperature
[0..1]

monitorTemperature
[1..1]

«activity»
Measure

Temperature «class»
Temperature

«class»
Humidity

«activity»
Monitor

Temperature

monitorTemperature
[0..1]

monitorTemperature
[0..1]

humidity
[0..*]

temperature
[0..*]

46

Validation
Systems Engineering
– UML 2 developed completely separately from

SE …
– … SE execution semantics matched UML 2

activities almost exactly.
High-throughput data flow applications
– Concurrent/pipeline hybrid.
– Optimized concurrent flow rate.
– Used for coordinating networks and

business applications in telecom and
financial applications.

47

More Information
UML 2 specification:
http://doc.omg.org/formal/05-07-04
UML 2 Activity articles:
http://www.conradbock.org/#UML2.0
SysML submission:
http://doc.omg.org/ad/05-11-01

	UML 2 Activity Modeling for Domain Experts
	Overview
	UML For Domain Experts
	UML For CIM/Analysis
	UML For System Engineering
	UML For Ontology
	UML for Business Modeling
	UML for Process Knowledge
	Integrated Models
	Integration with UML 1.5 Action / Procedure Model
	More Than Pictures
	Repository-Centered
	Input to UML 2 Activities
	Example from SAP
	Example from HP
	Exclusive/complex join
	Error handling
	Asynchronous invocation
	Process instances
	Activity Modeling
	Activity Modeling
	Activity Modeling
	Activity Elements
	“Flow” semantics
	Actions and Object Nodes
	Actions and Object Nodes
	Queuing
	Queuing
	Activity Parameter Nodes
	Streaming Parameters
	Exception Parameters
	Parameter Sets
	Control Nodes
	Control Nodes
	Interruptible Region
	Reentrant Activities
	Reentrant Activities
	Time Model
	First-class Behavior Model
	First-class Behavior Model
	Full Action Model
	SE Extensions
	Rate and Buffer Reduction
	Activity Decomposition
	Validation
	More Information

