
1

IntelliCorp, Inc.

Response to the OMG
Analysis and Design Task Force

UML RTF 2.0
Request for Information

Suggested Enhancements for UML

Prepared by: Conrad Bock
IntelliCorp, Inc.

OMG Document ad/99-12-02

Response Date: 17 December 1999

Contributors: Guus Ramackers
Oracle Corporation

Contact: Conrad Bock
IntelliCorp, Inc
1975 El Camino Real West, Suite 201
Mountain View, CA 94040-2216
(650) 965-5720
bock@intellicorp.com

2

Table of Contents

1. INTRODUCTION 3

2. RFI QUESTIONS 3

2.1 NEED FOR MAJOR UML REVISION 3
2.2 ROADMAP RECOMMENDATIONS 3

3. STATIC ELEMENTS 4

3.1 RELATIONSHIP 4
3.1.1 Contextualized association in composites 4
3.1.2 Association specialization 8

3.2 EXTENSION MECHANISM 9
3.2.1 First-class extension mechanism 9

4. BEHAVIOR ELEMENTS 10

4.1 COMMON BEHAVIOR 10
4.1.1 Publish/subscribe 10

4.2 ACTIVITY GRAPH 11
4.2.1 Activity graphs independent of state machines 11
4.2.2 Goal/result modeling 11
4.2.3 Event consumption 13
4.2.4 Separation of control and object flow 13
4.2.5 Branch to path that does not synchronize 15
4.2.6 Events starting a process 16
4.2.7 Starting thread without fork 17
4.2.8 Transformation of values from output parameters to input 18
4.2.9 Notation for object flow between input/output parameters 19
4.2.10 Concise notation for showing the type of object used in a call state 20

4.3 STATE MACHINE 20
4.3.1 Interruptible actions 20
4.3.2 Explicit completion events 20
4.3.3 Boolean event combination 21
4.3.4 Parallel event dispatch 22
4.3.5 Models of execution-time behavior 23
4.3.6 Parameterized state machines 24

5. APPENDIX: UML 1.4 ISSUES 25

6. REFERENCES 28

3

1. Introduction

This document is submitted to the OMG's Analysis and Design Task Force (ADTF) in
response to the Request for Information (RFI) entitled "UML 2.0 RFI." It suggests text
for the UML 2.0 RFP on various issues and presents background information for each.
Specific proposals are not given here, only a general sketch of the requirements or
problem, issues around that, and area in which the requirements or problem should be
solved.

If any of these topics can be handled as part of UML 1.4, then let please us know.
Conversely, an appendix (section 5) is provided listing the issues we plan on submitting
to the UML 1.4 RTF. If any of these appear to be major revision, also please let us
know.

2. RFI questions

We were involved with the UML 1.3 and contributed to the Road Map recommendations
it gave for the UML 2.0, which we fully support (see section 2.2). Consequently we have
focused in this document on issues that are of particular concern to us. In the interests
of brevity we are answering only one question posed by the RFI (see next section).

2.1 Need for major UML revision

A major of revision of UML for business modeling is definitely required. The experience
with the OMG workflow group is a case in point. They evaluated UML and decided to
omit it from the first draft of their RFP for a process definition language. Each group
concerned with business systems is in danger of likewise rejecting UML and requiring,
as in the case of the workflow group, damage control on the part of UML committee
members. This of course will be a severe drain with the increase in number of other
groups considering UML.

Business modeling is a very large market for UML and requires attention to its particular
requirements. This is not simply a matter of education. We know from language design
that any Turing-equivalent machine can, with enough effort, be used for any application.
The same can be said of UML's behavior models. However, UML is an industrial
standard and is consequently is not concerned with theoretical results. Practical
language design requires attention to the specific use cases for that language, and
crafting of the language for its particular purpose. Many of the suggestions in this
document are made with that goal in mind.

2.2 RoadMap recommendations

We fully support the areas of revision listed in Appendix A of the RFI, even though we
have not addressed all of them in this document:

4

1. Architecture
♦ Physical metamodel
♦ Guidance on extending UML
♦ Kernel cleanup

2. Extensibility
♦ First-class extensibility mechanism
♦ Improved profile specifications

3. Components
♦ Improved semantics and notation for components

4. Relationships
♦ More complete semantics for refinement, trace, and composite aggregation.

5. Behavioral Modeling
♦ State machines and activity graphs

Activity graphs independent of state machines
More permissive concurrency
State machine generalization

♦ Collaborations
More complete semantics for patterns

6. Model management
♦ Refine notation and semantics of models and subsystems for enterprise

architecture.
7. General mechanisms

♦ Model versioning
♦ Diagram interchange

3. Static Elements

3.1 Relationship

3.1.1 Contextualized association in composites

Figure 1 shows a very common kind of class diagram that is not currently supported in
UML. It specifies a composite class that is constructed by associating its parts, as you
might find in any CAD diagram. In particular it models that engines used in cars are
restricted to powering wheels, but restricted to propellors in boats. The general
associations used in these particular examples are shown in Figure 2. Such CAD-style
diagrams are semantically equivalent to the following models:

1) Each association between parts that appears in the diagram, for example the
POWER association between ENGINE and AXLE, can be translated to a constraint
on the composite class that restricts the general association to be used as
indicated in the diagram when it is applied to the parts of the composite class.

5

2) Each part (class) that appears in the diagram, like ENGINE, can be translated to a
special subclass used only in this diagram in that particular place. For example,
ENGINE can be translated to CAR-ENGINE or BOAT-ENGINE. We call these role
types or qua types, as shown in Figure 3, [2]. The role type names are notated in
parentheses above the classes in Figure 1. Then the general associations, like
POWER, can be specialized to operate between the role types.

In either case, the user should be able to diagram in the simple way shown in Figure 1,
rather than dealing with the complexity of constraints or role types.

From a semantic point of view, the second model has the advantage that it reuses
association specialization functionality, which will probably be available in UML 2.0 (see
section 3.1.2). For example, the multiplicities between ENGINE and POWERTRANSMITTER
are specialized to be more restrictive in cars. This is more explicit semantics than using
a constraint note, and certainly much simpler, especially when a class may play different
roles in the composite, or use the same association in different ways in each role. For
example, the CONNECT association may between WHEEL and AXLE may have different
properties for front and back wheels/axles. One might try collaborations as a semantics,
but a collaboration instance does not require the associations to be instantiated, just that
they are used to send messages to other objects. Perhaps collaborations could be
enhanced to handle contextual associations and composition.

Since attributes are conceptually a form of association, as the UML documents explain,
all the above discussion applies to attributes as well. For example, a dialog box may be
modeled as a composite class, so that multiple versions of it can be opened at the same
time by instantiating the class. The controls in each dialog box class have certain values
or restrictions on their attributes, for example, a particular button may be red or a
particular slider may range from 0 to 100. These are modeled as contextualized initial
values and attribute types. Normal associations can be used in this application also, for
example to model the tabbing order between controls.

UML cannot currently support these sort of models because it does not treat composition
much differently than other sorts of associations. The discussions on composition up to
now omit a most essential and common fact: that composites set up contexts for the
various associations within it, so that statements about associations apply only inside the
composite. The best a modeler can do in UML currently is shown in the Notation Guide,
Figure 3-36, page 3-77, which diagrams the parts of a composite class, but no
associations between them. In addition, any attribute initial value applied to one of the
part classes, the width of a SLIDER for example, would affect all sliders in all windows,
not just the window being modeled.

Contextual association models have been built and used in customer applications and
products at IntelliCorp since 1985. There have been at least four successful
implementations. It is a well-proven modeling approach.

6

Figure 1: Contextual associations

Figure 2: General associations contextualized in the previous figure

(Front-Axle) (Rear-Wheel)

(Front-Axle) (Rear-Wheel)

Engine WheelAxle

11 11

power

21 21

connect

WheelAxle

21 21

connect

Boat

(Boat-Engine)

PropellorEngine

1..*1..1 1..*1..1

power

(Car-Engine)

Car

Power TransmitterEngine

1..*1..* 1..*1..*

power

Axle PropellorWheel
1..* 1

connect

7

Figure 3: Role type or qua types

Suggested text for RFP:

The proposal should suggest changes that support more straightforward
modeling of associations and attributes in the context of a composite class. It
should be possible to draw a class diagram for a composite class showing its
parts (as classes), associations between these parts, and initial attribute values
on these parts, all without constraining how those kind of parts are associated or
attributed in other composites.

For example, it should be possible to model a car as having an engine
associated with its wheels, at the same time using the engine class in the model
of a boat that associates the engine with a propellor. It should be possible to
model a class of dialogs, with its controls given initial values, such as the range
of a slider, that do not affect the use of those same types of controls in other
dialog classes. It should be possible to use the same class more than once in a
composite, having different associations and initial attribute values in each case,
or even different properties of the same association or attribute. See Bock,
Conrad, and James Odell, “A Foundation for Composition,” Journal of Object-
Oriented Programming, 7:6, October 1994, pp. 10-14.

Car-Engine Front WheelFront Axle

11 11

power

21 21

connect

Rear WheelRear Axle

21 21

connectPropellorBoat-Engine
1..*1 1..*1

power

WheelAxle

1..*1 1..*

connect

Power Transmitter

Engine

1..*

1..*

1..*

1..*

power

8

3.1.2 Association specialization

Substitutability is a central issue to association specialization, because the specialized
types do not support the same navigation functionality as the generalized ones. For
example, suppose an association between CAR and DRIVER is specialized to RACE CAR
and RACE CAR DRIVER, with the restriction that only race car drivers can drive race cars.
Then programs manipulating drivers and cars cannot link just any driver to any car, as
implied by the model. The programmer may not even be aware that CAR and Driver are
specialized by some other model. The proposal should address this issue.

The proposal should take as use cases the kinds of association specialization given by
McCarthy in the July/August 97 issue of Journal Of Object-oriented Programming, page
69. Especially see his figure 13, page 75. The article has many other good points, such
as rules for specialization of role properties such as multiplicity, ordering, and qualifiers.

Specialization of association need not imply restriction of objects on all ends of the
association, but may restrict only any or no ends (weak and strong roles in McCarthy’s
terminology, and see McCarthy’s figure 13(b-c)). If neither end is specialized, then only
properties of the association are specialized, such as multiplicity.

Since attributes are conceptually a kind of association, as the UML documents explain,
any changes for association specialization should also be made for attribute
specialization.

McCarthy takes the formal view that a specialized association is a different association
than the parent association. In particular, he supports specialized associations with
different (end) names than the parent association. This would be analogous to renaming
an inherited attribute. There are good reasons to do this at the analysis level, for
example, the “nose” of a mammal is called a “trunk” on an elephant, and it reflects the
general rule that no modeling element should be identified by its name. However,
programming languages normally use the end name to traverse associations, and need
to access the same association on objects that happen to be subtypes of the end types
without being concerned about end name changes.

The name-change feature is a good idea, but would require that language compilers and
interpreters know about it, and transparently support substitutability, either by translating
the name, or providing a way to uniquify the end name. If we omit this feature, then a
number of McCarthy’s issues go away, for example, concerning abstract associations.
On the other hand, omitting the name-change feature means the model cannot support
specializing associations between the same two classifiers (see McCarthy’s figure
13(c)). The proposal should address this issue.

Suggested text for RFP:

The proposal should suggest changes that support modeling of association
specialization. It should support:

1. rules for inheritance of all the meta-features of associations and
association ends, such as multiplicity, ordering and so on.

9

2. specialization of any, all, or none of the classifiers participating in a
specialized association.

3. cases where some or all of the classifiers associated by the general
and specific associations are collapsed, for example, when one of the
classifiers participating in the general association also participates in
the specialized association.

The proposal should address the question of substitutability in association
specialization. For example, suppose the association between cars and drivers
is specialized to race cars and race car drivers, with the restriction that only race
car drivers can drive race cars. Then the general association between cars and
drivers cannot be manipulated as freely as the model says, because not all
drivers can drive all cars.

The proposal should address the issue of whether specialized associations can
have different (end) names than their generalizations. Some benefits are that
terminology can be specialized with the associations, and association
specialization would not require the end types to be specialized. A drawback is
that it impairs substitutability, that is, applications using the model will not have
consistent association names to use everywhere in the type hierarchy.

The proposal should suggest a graphical notation and an alternative textual
annotation.

Submitters are encouraged to review McCarthy’s “Association Inheritance and
Composition” in the July/August 97 issue of Journal Of Object-oriented
Programming, page 69. Especially see figure 13, page 75, for examples of
requirements 2 and 3 above.

3.2 Extension Mechanism

3.2.1 First-class extension mechanism

The informal term for this topic, ”heavy-weight” extension mechanism, may have the
connotation that it will be harder to use than the light-weight ones. However, the new
mechanism should simply be UML itself, and require little additional training to apply.
The problem with the current mechanisms from a user’s standpoint is that they define
ways of doing things that are available in UML without them, namely subtyping
(stereotyping) and attributes (tagged values). The fact that these things are done at a
different meta-level should not require a completely new language. Proposals should
draw on research in self-reflective languages to define a simple way to extend UML
using the core (static) UML itself.

Suggested text for RFP:

The proposal should suggest changes that support modeling of extensions to
UML using the Core and Datatype packages of UML. It should not define a new

10

language for existing capabilities in UML, regardless of the meta-level on which
those capabilities are applied.

4. Behavior Elements

4.1 Common Behavior

4.1.1 Publish/subscribe

Sending signals explicitly between objects leads to systems with too much coupling
between their parts. Unfortunately, this is designed into UML because objects producing
signals usually must know who is interested in those signals, and send them explicitly to
those objects. The only exception currently is the "all" target available in send actions
(see ObjectSetExpression). This sends the signal to all instances that can receive it, as
determined by the underlying runtime system, which is not modeled.

Receptions can be used to model which objects will receive (subscribe to) signals
broadcast this way, but these do not express which particular instances of the class
actually want to receive the signal at any particular time, or which senders of the signals
are acceptable. Signal events likewise are only associated with the signal they are
subscribing to, not which objects in particular they wants to receive the signal from.
Guards could express this restriction, but it requires that the event pass the source of the
signal as a parameter, and in any case, requires repeating the same guard in many
places in the state machine if the interesting objects to not change.

The above comments apply to change events also, and perhaps call events if they can
apply to operations on objects other than the one a state machine is attached to. One
could model the subscribed objects in this expression, it may require repeatedly entering
the restriction on the monitored objects if this is constant across the state machine.

It would significantly enhance UML's publish/subscribe capability if modelers could
control event subscription to at a more fine grained level. There are various possibilities:

♦ An action language could have a command for (un)subscribing a particular
instance to some set of signals from another instance.

♦ A class could specify an expression that is evaluated to determine which
signals, possibly on which objects, that an instance is interested in being
notified about. This could be applied to change events also.

♦ A class could specify that all its instances are interested in some set of
signals or changes from all the instances of another class.

The action language would need to be enhanced to refer to the currently subscribed
objects/events. There are probably other subscription schemes that respondents can
think of.

Suggested text for RFP:

11

The proposal should suggest changes that support modeling of more specific
event subscription than is currently available with receptions. Specifically, the
changes should support specification of limits to the particular events that an
instance can receive and which objects it can receive them from. For example, a
class might specify that all its instances are interested in some set of signals from
all the instances of another class. Or an expression might be specified that
determines more precisely which instances of the other class are interesting.
These changes will work in conjunction with the various broadcast mechanisms
in UML, such as changes that are detected by change events, and the "all" target
ObjectSetExpression for SendAction, which functions as the publishing
specification for signals.

4.2 Activity Graph

4.2.1 Activity graphs independent of state machines

There are many difficulties regarding business modeling that are due to activity graphs
being a specialization of state machines. Specifics of these are given in the following
sections. However, the RFP should contain a general request to address this issue at
the meta-model architecture level. As argued in the introduction, Turing-like universal
behavior models are inherently unusable for industrial applications. It is not intended
that UML surface to the user a "super" behavioral model that covers both state machines
and activity graphs. So the primary question remaining is whether state machines and
activity graphs should have a common supertype for architectural reasons in the meta-
model, and if, so how the collaboration model relates to this supertype. There are
benefits to a generic behavior model in that it provides some continuity and
comparability between the more specific models. The responses should address this
question and make a recommendation.

Suggested text for RFP:

The proposal should suggest changes that support modeling of activity graphs
independently of state machines. It should specify an unambiguous execution
semantics for activity graphs. The model and execution semantics should be
close to the activity diagram notation and not require complicated mappings to
the underlying model.

The proposal should also address whether the UML meta-model should have a
common supertype between state machines and activity graphs. It should
explain the benefits and disadvantages of both approaches, and how the
collaboration model would relate to a common supertype.

4.2.2 Goal/result modeling

12

It is common in business modeling to focus first on the goal or results that a behavior is
meant to achieve, before addressing what the behavior is exactly or who/what will be
responsible for it. This could be modeled currently in with postconditions on operations,
since operations can be specified without a classifier owning them. However, there is no
concise, standard notation for postconditions in state or activity diagrams. The proposal
should address this. It should also be able to notate and model operations that have
multiple postconditions and have different transitions associated with each postcondition.
This explicitly models which effects are associated with which causes.

In some popular business modeling methodologies the goal/result of a behavior is
modeled as an event that it brings about [7][8]. The event triggers other behaviors, as in
state machines. There is some ambiguity currently in these methodologies, because it
isn't clear whether an operation A invoked in one diagram, resulting in say event E, is
meant to trigger the transitions following E in all diagrams. The proposal should resolve
this ambiguity.

UML currently uses object flow for modeling cause and effect. For example, fixing a roof
is an activity with at least two facts true at the end, namely the roof being fixed and the
workers being free for other jobs. Each result has a different effect, namely billing the
customer and assigning the workers to new jobs. Normally business models will give
the roof-fixing activity two resulting events, and link each to the effect that they have. In
UML, the resulting events are modeled with an object-flow state that has a signal as its
object (see Figure 4). This means the roof-fixing activity outputs two signals, and the
billing and worker-reassignment activities take these as inputs. But a different business
process may need to bill the customer before the roof is fixed, or reassign workers that
are in the middle of a job. So BILL CUSTOMER should take a job description, not a fixed
roof. Likewise, fixing a roof should not be required to output the workers that are free,
just because in this particular case a later operation requires this information. The UML
currently forces business modelers into defining activities that are bound to their usage,
thereby impairing reusability.

Figure 4: Modeling Resulting Events in UML

Suggested text for RFP:

The proposal should suggest changes that support modeling and notation for the
conditions that an action or subactivity state is expected to bring about. This
might be modeled as a postcondition of the operation invoked by an action, or an

Fix Roof

Bill Customer

Assign WorkersWorker
[Available]

«signalflow»

«signalflow»

[Fixed]
Roof

13

event, for example. Actions/subactivities that have multiple resulting conditions
can have a different transition for each condition. The proposed model might
express an event-driven semantics, that is, the resulting event for an action
triggers the next action in the activity diagram. In this case, it should specify the
semantics for the application that has multiple activity diagrams containing the
same resulting event. See:

Martin, James, and James J. Odell, Object-Oriented Methods: A
Foundation (UML edition), Prentice Hall, Englewood Cliffs, NJ, 1998.

Keller, Gerhard and Teufel, Thomas, SAP R/3 Process Oriented
Implementation: Iterative Process Prototyping, Addison-Wesley,
1998.SAP

4.2.3 Event consumption

State machines currently have little memory of events. Once an event is dispatched
from the queue and used to trigger a transition, it is lost, even if it had been previously
deferred. Many applications cannot afford just one response to an event, such as in a
business environment. Businesses need a history of events on which to base their
decisions. It would be very useful if the events dispatched in a state machine or activity
graph were kept, and triggers were able to reference them. These past events could
have time stamps, and be managed in some way by explicitly removing them, or having
an automatic expiration policy. It may be useful to let state machines inspect each
other's past events, or post the past events to a globally accessible location.

Suggested text for RFP:

The proposal should suggest changes to activity graphs that support keeping a
history of events that have already been dispatched. It should address how
these past events are managed, such as by time stamps, manual or automatic
removal on expiration, and so on. It should address the question of whether the
past events are accessible only by the activity graph that receives them, or
whether they are globally accessible.

4.2.4 Separation of control and object flow

Control flow and object flow need to be separated semantically, so one does not imply
the other as they do now in UML, where both are modeled as state transitions. Control
and object flow differ in the relative emphasis they place on determining inputs to a
behavior versus when that behavior starts. Control flow emphasizes that one step in the
behavior starts when another is finished, regardless of whether inputs are available.
Object flow emphasizes that a step requires certain inputs in a complete form before the
step is allowed to start. This is a completely traditional and common-sense distinction
[4][5].

For example, Booch's version of an activity diagram is not allowed in UML currently (see
Figure 5 below, reproduced from p 270 of his User's Guide). The two transitions coming

14

from SHIP ITEM are both state transitions in UML, and their targets are states. This
means two states are being activated at the same time, namely RECEIVE ITEM and
ITEM[RETURNED], a situation not supported in state machines without explicitly declared
parallelism. Also the ITEM[AVAILABLE] has no path out to the final state, which means the
machine will never terminate.

Presumably Booch meant that SHIP ITEM outputs ITEM [RETURNED], which in turn is
passed farther downstream to RESTOCK ITEM. However, RESTOCK ITEM does not start
just because ITEM [RETURNED] is available. It only starts after RECEIVE ITEM is finished,
using ITEM [RETURNED] as input. Booch uses the solid and dashed lines as if they had
different semantics, instead of both being state transitions as they are currently. To get
the semantics he wants, Booch would need to introduce a cumbersome set of forks and
joins (see Figure 6).

Object flow refers to the passing of objects/data from one action/subactivity state to
another. The only time it could possibly imply control is for action/subactivity states that
are not the target of any control transition. In this case, the action/subactivity state might
be entered when all the incoming object flows are available. Likewise control flow refers
to when an action/subactivity state is entered. The only time it should be possibly be
concerned with the inputs to a state is when the state is the target of object flow
transitions as well. In this case, the action/subactivity state might be entered when all
incoming flows, control and data, have arrived. In any case, the proposal would be
expected to specify the rules for interaction of control and object flow.

Suggested text for RFP:

The proposal should suggest changes to activity graphs that support distinct
constructs for control and object flow. The proposal should specify how control
and object flow interact. For example, perhaps a state that is the target only of
object flow transitions can be entered when all objects are available.

Request
Return

Get Return
Number

Ship Item

Item
[returned]

Receive
Item

Restock
Item

Credit
Account

Item
[available]

Customer Telesales WarehouseAccounting

15

Figure 5: Activity Diagram currently disallowed

Figure 6: Activity Diagram required in UML currently

4.2.5 Branch to path that does not synchronize

It is a common case in both operating systems and business models to start a parallel
process without concern for synchronizing it with the parent process. The WfMC call this
a "chained process".

Suggested text for RFP:

Request
Return

Get Return
Number

Ship Item

Item
[returned]

Receive
Item

Restock
Item

Credit
Account Item

[available]

Customer Telesales WarehouseAccounting

16

The proposal should suggest changes in activity graphs that support modeling of
parallel threads that do not join back to parent thread/state.

4.2.6 Events starting a process

It is common in business modeling to start a process based on an external event. For
example, a support process is started when a customer calls. Since a new instance of
the process is started each time a customer calls, perhaps when another support
process is are still operative, this cannot be done with a single state machine. It requires
two machines, one repeatedly invoking an asynchronous action that starts the other, as
shown in Figure 7, using activity graph notation. The graph waits for the arrival of a
customer call signal, and then uses an asynchronous CREATEACTION on a class with its
own state machine. This way the state machine is started each time a customer calls
the support center. An alternative is to use an asynchronous call action that invokes an
operation realized by a state machine. In either case, a class is needed in addition to
the two state machines.

Figure 7: Events starting a process in UML

Business modelers do not expect and often do not need so much complexity to model
an event-started process. Figure 8 shows a simpler diagram. The starting event is
modeled at the beginning of the process instead of the initial state, notated as a filled
triangle. This technique also requires a singleton class, so that the support center can
be started and halted by creating and deleting the instance. Some applications may

Support Call
Process

Wait for
Customer Call

Create
Support Call

Process Object

[Stop Support][Continue Support]

. . .

17

need to limit the number of invocations of the process, for example, there are limited
resources at the call center. The proposal should present a way to model this restriction
using the simpler technique.

Figure 8: Simpler model for event-starting a process

Suggested text for RFP:

The proposal should suggest changes to activity graphs that support simpler
modeling of processes that are started by an event. The notation and model
should be very simple, perhaps limited to a single new element and icon. The
model should support parallel invocation of the process by multiple incoming
events. It should be able to place restrictions on the number of parallel
invocations. The model should support runtime control over when the process
will respond to the event.

4.2.7 Starting thread without fork

It is very common in business modeling to wait for an event to happen before proceeding
with a behavior. UML currently requires such wait states to have transitions into them,
even when this is very cumbersome. Imagine the case shown in Figure 9 with a very
large business process diagram. Requiring the visually long transition from the fork is
hard to draw in a tool and clutters the diagram. Figure 10 shows an alternative. This
was declined in UML 1.3 because it was not clear when the wait state should begin
waiting. We think some simple conventions can be adopted to resolve this ambiguity.
For example, in the case of Figure 10 it is obvious that the wait state begins when the
fork is passed. This is such a common practice among business modelers that they
should be given a chance to propose something that has an unambiguous semantics.

Support Call
Process

Customer Call

. . .

18

Figure 9: Thread that waits for event

Figure 10: Wait state that starts a thread

Suggested text for RFP:

The proposal should suggest changes to activity graphs that support modeling of
wait states that do not require incoming transitions. Care should be taken that
the model and notation express an unambiguous semantics.

4.2.8 Transformation of values from output parameters to input

It is a common workflow application to transform the output of one step in a behavior to
the input of another. For example, suppose the call state ACCEPTORDER invokes an
operation that returns an order, and it transitions to another call state ADVISECUSTOMER
that takes a customer as input (see Figure 11 from SAP). It would be very useful to write
an action or other specification that indicates the customer is calculated for
ADVISECUSTOMER by retrieving the customer of the order output by ACCEPTORDER.

Wait for event

Wait for event

19

Figure 11: Transformation of outputs to inputs

Object flow states cannot serve this purpose, because they are constrained to not be
transformed on the way from output to input (see their well-formedness rules and the
usual usage). Putting the transformation to the action of the state is not where business
expect it to happen, because the state is simply the invocation of the operation in their
view. In addition, two transitions into a state should be able to specify different
transformations. If completion events were explicit in UML (see section 4.3.2), they could
at least carry the output values to be accessed by actions in the target state. However, it
would be most transparent for the business user if the transformation could be part of
the transition between the two states.

Suggested text for RFP:

The proposal should suggest changes to activity graphs that support modeling of
transformation of outputs of actions in one state to inputs of actions in states
immediately downstream. The transformation can be specified in UML's action
semantics or user's language. It would be most transparent for the business user
if the transformation could be part of the transition between the two states, so
that different transformations could target the same state.

4.2.9 Notation for object flow between input/output parameters

The current activity graph model supports the linking of object flow states to parameters
that pass them as output and take them as input. However, there is not a corresponding
notation.

Suggested text for RFP:

The proposal should suggest notation for the meta-association between
PARAMETER and OBJECTFLOWSTATE in activity graphs.

Can this be taken as a 1.4 item?

Order

Party

1

*

customer

Accept
Order

Advise
CustomerFill Order

Order.customer -> Customer
...

output of
"Accept Order "

input to
"Advise Customer"

20

4.2.10 Concise notation for showing the type of object used in a call state

It is very common for readers of activity diagrams to look at a call state and want to see
what type of object is having an operation invoked by the action of that state. There is
currently no adopted notation for this. Notes are too bulky and non-standard for this
application. Without this notation activity diagrams appear non-object-oriented.

Suggested text for RFP:

The proposal should suggest notation for call states in activity graphs that shows
the type of object that is having an operation invoked by the action of that state.

Can this be taken as a 1.4 item?

4.3 State Machine

4.3.1 Interruptible actions

It is a common case to interrupt a composite state or submachine state with an outgoing
transition and trigger. However, neither of these works under an object-oriented usage,
that is, when the behavior to be interrupted is a method on an object. In this case, an
action state must be used to invoke an operation, and action states are not interruptible.
It should be possible to interrupt a state-machine method for an operation invoked by an
action in a state, by using an outgoing transition with trigger from the action state. It is
not sufficient to have a state machine interrupt itself, because the interrupt conditions
may be different for various states invoking the same operation.

Suggested text for RFP:

The proposal should suggest changes to state machines that support modeling
the interruption of actions in an state by triggered transactions outgoing from the
state, especially in the case where the action invokes an operation implemented
by state-machine methods.

Should this be an activity graph issue?

4.3.2 Explicit completion events

The runtime semantics for completion events is too specific. It forces completion events
to be handled within the run-to-completion step in which they occur, rather than being
queued for selection by the dispatcher:

[p 2-147 Semantics] A completion transition is a transition without an explicit
trigger, although it may have a guard defined. When all transition and entry

21

actions and activities in the currently active state are completed, a completion
event instance is generated. This event is the implicit trigger for a completion
transition. The completion event is dispatched before any other queued events
and has no associated parameters.

This means there can be long chains of activity through many states in a single run-to-
completion step. It would be more flexible to queue completion events along with the
others, to be selected and dispatched by the particular priorities of the implementation.
This would allow interleaving of other activities into a long chain of completion
transitions. It would also provide an explicit event to be used for dynamic concurrency
arguments. Such flexibility would not be inconsistent with any other semantics of UML
state machines, and would not prevent implementations from choosing the current
semantics. In fact, it would be more consistent with modeling completion events as the
real events they implicitly are anyway.

Suggested text for RFP:

The proposal should suggest changes to state machines that support flexible
dispatching of completion events, presumably by modeling them as real events
that are put on the event queue.

4.3.3 Boolean event combination

It is a common application of state machines to have conjuncts or other Boolean
combinations of events as transition triggers. Currently users must use dummy
operations, or the signal receipt notation available in activity graphs (see Figure 12). In
either case, cumbersome parallel threads are required, especially if the event
combination is a complicated Boolean expression. The semantics document gives only
a vaguely worded justification for this:

Event conjunction is not supported, and the semantics is given in respect to a
single event dispatch, to better match the type context as opposed to a general
system context. [p 157]

Suggested text for RFP:

The proposal should suggest changes to state machines that support arbitrary
Boolean combination of events as triggers of transitions.

22

Figure 12: Event combination

4.3.4 Parallel event dispatch

The runtime semantics for event dispatch is too restrictive. It forces sequential
processing of events even when parallel dispatch would be much more time-efficient
(see Figure 13, from SAP). The simplification taken in UML 1.3 is fine for an early
release, but UML 2.0 should improve this area for real-time modeling.

Suggested text for RFP:

The proposal should suggest changes to state machines that support flexible
dispatching of events in parallel to concurrent regions of a state machine. The
proposal should address the question of parallel event consumption, which may
require multiple event queues per state machine to allow one region to access
events consumed by another.

Action 1

Wait For
Event E1

Wait For
Event E2

Action 2

E1 AND E2
Action 1 Action 2

23

Figure 13: Sequential and parallel event dispatching

4.3.5 Models of execution-time behavior

It is general practice to create constructs that describe execution-time information about
a behavior. For example, operating systems assign a data structure for each executing
thread, that has attributes like how much CPU time it is taking, and operations like
suspend and abort. The UML does not currently support these models fully, because
neither operations nor state machine have an instance-level (execution) model. The
collaboration model already has this capability.

Suggested text for RFP:

The proposal should suggest changes to the UML behavior models, state
machines and operations in particular, that support execution-time semantics.
For example, it should be possible for the user of UML to define attributes for an
executing operation or state machine, such as how long they have been running,
and operations such as suspend and abort.

StB2

StA1

ActA12
(100ms)

StA2

StB1

ActB12
(10ms)

StB2

StC1

ActC12
(100ms)

StC2

ActB23
(100ms)

StB3

St

StA StCStB

StA1
ActB12StB1 StB2 ActB23

ActC12StC1 StC2
StB3

StA2

E2 E1 E3

Arrival of
Events:

E1 E2

E3

E2

E2 E1 E3

Consumption
of Events:

StA1
ActB12StB1 ActB23

ActC12StC1 StC2
StB3

ActA12 StA2

E2 E1 E3
Consumption
of Events:

ActA12

Processing Time for UML 1.3: approx. 300ms

Ideal Processing Time: approx. 110ms

24

4.3.6 Parameterized state machines

Submachine states support partial reuse of state machines by allowing multiple
submachine states to refer to the same state machine. However, there is no provision
for parameterizing the submachine. The closest construct to parameters is stub states,
which provide for transitions into named states, independently of the submachine being
invoked. This does not provide the same capabilities as parameters, because
parameters provide local data for the entire state machine to act on, whereas stubbed
transitions provide data only for the targeted states.

Suggested text for RFP:

The proposal should suggest changes to state machines that support
parameterization, especially when a machine is invoked from a submachine
state. These parameters should have the same semantics for the submachine
as parameters on operations that have state machines as methods.

25

5. Appendix: UML 1.4 Issues

These unreported issues listed here in case any would be considered major revisions.

1. States currently do not model the conditions required for an object to be in a
particular state. A constraint note can be linked to a state, but there is no
specification of when the constraint should be tested. It could be tested when the
object enters the state, leaves the state, or at any other time. Even if this were
unambiguous, the consequence of violating the constraint is not defined, namely, to
transition the machine to a state that has a constraint satisfied by the object. This
might be modeled as a change-event trigger on an exiting transition, but it would be
redundant with the constraint recorded on the state and with triggers on other
transitions leaving the state, thereby impairing maintainability.

Proposal: define a stereotype of constraint note for the above purpose, with
unambiguous semantics.

2. Dynamics concurrency in activity graphs needs some way to access the arguments
provided by the concurrency expression. The Reference manual suggests the
"implicit" event, but does not define what that is (p 437). Perhaps it is an the action
language issue. See section 4.3.2 above on completion events.

3. It is possible to model forks in sequence charts using multiple asynchronous
messages. However, it is not possible to model joins, because return messages are
considered activators, and multiple activators are not allowed.

Proposal: allow multiple activators for messages.

4. Make guard evaluation procedure for choice points more explicit. It is not clear from
the specification whether all guards are required to be evaluated, even after one is
found to be true. This affects performance/real time issues even if the guards have
no side-effects.

5. The <<primitive>> keyword/stereotype used in the meta-models of the datatype
section are not defined. Isn't clear what level the datatype meta-model elements are
at.

6. Description of context role, between state machine and model element, says:

Each state machine is owned by exactly one model element.

The meta-model shows 0..1.

7. Flow relationship has the wrong semantics specified for it:

[p 2-33] It usually connects an activity to or from an object flow state, or two
object flow states. It can also connect from a fork or to a branch.

26

Compare:

<<become>>

Specifies a Flow relationship, source and target of which represent the
same instance at different points in time, but each with potentially
different values, state instance, and roles. A Become Dependency from A
to B means that instance A becomes B with possibly new values, state
instance, and roles at a different moment in time/space.

<<copy>>

Specifies a Flow relationship, the source and target of which are different
instances, but each with the same values, state instance, and roles (but a
distinct identity). A Copy Dependency from A to B means that B is an
exact copy of A. Future changes in A are not necessarily reflected in B.

8. Actions should have a ISPARALLEL attribute to specify if the iteration is sequential or
parallel.

9. Using a role as the target of a create action does not support instantiation of children
of the role classifier. [p 2-112 collaboration semantics].

10. What does it mean for RETURNACTION to be synchronous?

11. The Constraint meta-type, in the Extension Mechanisms meta-model, has two
associations with the same association end name on the "opposite" ends
("constrainedElement"). Assuming that UML meta-classifiers should adhere to the
OCL for regular classifiers, then this is ill-formed according to OCL 3 of Classifier, p
47:

[3] No opposite AssociationEnds may have the same name within a Classifier.
self.oppositeEnds->forAll (p, q | p.name = q.name implies p = q)

The same may be true for the Collaboration meta-type (the "ownedElement"
association end is duplicated), but these two are specializations of an association
inherited from ModelElement, so perhaps that is acceptable.

12. See collaboration review for unfixed items (myreviewnote.txt).

13. CreateAction links to only one classifier. It should be multiple.

14. Multi-dimension partitioning (see issue filed by Oliver).

15. Action composition meta-modeled improperly: action sequence inherits from action.
Should be Gamma's composition model with action as a sibling of action sequence.

16. Issue 74: branch needs constraints to partition.

27

17. ownerScope in Feature has the same semantics as targetScope in
StructuralFeature. Aren't they clashing?

18. No mapping for this in mapping section, p 3-77:

[p 3-75, Notation section for Composition] An association drawn entirely within a
border of the composite is considered to be part of the composition.

19. What happens when a event is deferred in one region, but not another? Is it left on
the queue accessible to both regions, even if it has already been consumed by one
of the regions? Semantics says deferred events are kept if not used in one of the
regions. So if one region uses it, it is lost, even if it is deferred in the other region.
User cannot use event in both regions.

Reference manual says:

[p 443, Reference Manual] At the time that an object processes an event, it may
be in one or more concurrent states. Each state receives a separate copy of the
event and acts on it independently. Transitions in concurrent states fire
independently. One substate can change without affecting the others, except on
a fork or join caused by a complex transition (described later).

and refers to an internal queue of events:
[p 438] Deferred events. A list of events whose occurrence in the state is
postponed until a state in which they are not deferred becomes active, at which
time they occur and may trigger transitions in that state as if they had just
occurred. The implementation of such deferred events would involve an internal
queue of events.

20. Typo: The following should refer to "exit" not entry:

[Semantics p 134] An optional action that is executed whenever this state is
exited regardless of which transition was taken out of the state. If defined, entry
actions are always executed to completion only after all internal activities and
transition actions have completed execution.

28

6. References

[1] McCarthy, Brendan, "Association Inheritance and Composition", Journal Of Object-
oriented Programming, 10: 4, July/August 1997, pp 69-81.

[2] Bock, Conrad, and James Odell, “A Foundation for Composition,” Journal of Object-
Oriented Programming, 7:6, October 1994, pp. 10-14.

[3] Bock, Conrad, “Unified Behavior Models,” Journal of Object-Oriented Programming,
12:5, September 1999.

[4] Schlaer, Sally, and Stephan J. Mellor, Object Lifecycles: Modeling the World in
States, Prentice Hall, 1992.

[5] Bock, Conrad, “Three Types of Behavior Model,” Journal of Object-Oriented
Programming, 12:4, July/August 1999.

[6] Booch, Grady, James Rumbaugh, and Ivar Jacobson, The Unified Modeling
Language User Guide, Addison-Wesley, 1999.

[7] Martin, James, and James J. Odell, Object-Oriented Methods: A Foundation (UML
edition), Prentice Hall, Englewood Cliffs, NJ, 1998.

[8] Keller, Gerhard and Teufel, Thomas, SAP R/3 Process Oriented Implementation:
Iterative Process Prototyping, Addison-Wesley, 1998.SAP

