
ad/97-01-03

UML Semantics

version 1.0
13 January 1997

ii UML v 1.0, Semantics

2800 San Tomas Expressway
Santa Clara, CA 95051-0951
http://www.rational.com

Copyright © 1997 Rational Software Corporation.

Photocopying, electronic distribution, or foreign-language translation of this document is
permitted, provided this document is reproduced in its entirety and accompanied with this
entire notice, including the following statement:

The most recent updates on the Unified Modeling Language are available via the
worldwide web: http://www.rational.com

UML v 1.0, Semantics iii

 Contents
1. INTRODUCTION... 1

1.1 Organization ..1
1.2 Scope ..2
1.3 Conventions...2

2. CORE CONCEPTS: COMMON ELEMENTS.. 4

2.1 Description...4
2.2 Basic Semantics..6
2.3 Derived Semantics ..10
2.4 Standard Elements..11

3. CORE CONCEPTS: COMMON MECHANISMS... 13

3.1 Description...13
3.2 Basic Semantics..14
3.3 Derived Semantics ..17
3.4 Standard Elements..19

4. CORE CONCEPTS: COMMON TYPES ... 20

4.1 Description...20
4.2 Basic Semantics..21
4.3 Derived Semantics ..23
4.4 Standard Elements..23

5. STRUCTURAL ELEMENTS: TYPES, CLASSES, AND INSTANCES 24

5.1 Description...24
5.2 Basic Semantics..26
5.3 Derived Semantics ..29
5.4 Standard Elements..31

6. STRUCTURAL ELEMENTS: RELATIONSHIPS .. 34

6.1 Description...34
6.2 Basic Semantics..36
6.3 Derived Semantics ..38
6.4 Standard Elements..39

7. STRUCTURAL ELEMENTS: TYPES ... 42

7.1 Description...42
7.2 Basic Semantics..44
7.3 Derived Semantics ..47
7.4 Standard Elements..52

8. STRUCTURAL ELEMENTS: CLASSES .. 55

8.1 Description...55
8.2 Basic Semantics..56
8.3 Derived Semantics ..58
8.4 Standard Elements..60

9. STRUCTURAL ELEMENTS: COLLABORATIONS.. 61

9.1 Description...61
9.2 Basic Semantics..63
9.3 Derived Semantics ..64

iv UML v 1.0, Semantics

9.4 Standard Elements..66

10. BEHAVIORAL ELEMENTS: STATE MACHINES .. 67

10.1 Description...67
10.2 Basic Semantics..70
10.3 Derived Semantics ..79
10.4 Standard Elements..83

11. BEHAVIORAL ELEMENTS: INTERACTIONS ... 84

11.1 Description...84
11.2 Basic Semantics..86
11.3 Derived Semantics ..90
11.4 Standard Elements..91

12. VIEW ELEMENTS: VIEW ELEMENTS... 93

12.1 Description...93
12.2 Basic Semantics..94
12.3 Derived Semantics ..96
12.4 Standard Elements..96

13. STANDARD ELEMENTS.. 97

13.1 Description...97
13.2 Basic Semantics..97
13.3 Derived Semantics ..97
13.4 Standard Elements..97

UML v 1.0, Semantics 1

1. INTRODUCTION
This document presents the semantics of the Unified Modeling Language (UML). These
semantics are specified using a formal textual description together with a metamodel
describing the constituents of all well-formed models that may be represented in the
UML, using the UML itself. Send any feedback on this document via e-mail to
uml_feedback@rational.com.

1.1 ORGANIZATION
This formal textual description and metamodel are organized according to the following
five packages and associated diagrams:

Core Concepts
Common Elements
Common Mechanisms
Common Types

Structural Elements
Types, Classes, and Instances
Relationships
Types
Classes
Collaborations

Behavioral Elements
State Machines
Interactions

View Elements
View Elements

Standard Elements

The explanation of each diagram is further divided into the following sections:

Description A statement of the purpose and the scope of the diagram,
along with the definition of each relevant part not already
defined

Basic Semantics The meaning of the diagram and its parts

Derived Semantics The meaning of the diagram and its parts derived from
semantics not directly rendered in the given diagram

Standard Elements A cross reference to the standard stereotypes, tagged values,
and constraints that apply to the parts that appear on this
diagram, along with any common synonyms for these parts

2 UML v 1.0, Semantics

1.2 SCOPE
This purpose of this document is to present the complete semantics of the UML in a
precise and unambiguous manner. As such, this document is intended for advanced
readers, and is not well suited for beginners to learn and understand UML semantics.
Indeed, from this document, it may appear that the UML is large and complex. However,
much of this seeming complexity stems from the fact that the UML addresses a number
of modeling issues that are conceptually simple (for example, the meaning of a type) but
formally complex (whole books and theses have been written about the meaning of type).
Furthermore, the UML is sufficiently expressive to represent and connect the spectrum of
abstraction involved with software development across a wide range of domains,
including but not limited to information systems, hard real time systems, web systems,
and even certain non-software systems; the UML can handle the modeling of business
processes, their corresponding logical and physical software models, and even references
to their implementations. Rest assured, the UML is not that complex: the UML is built
from a small number of concepts applied consistently across a number of modeling
problems.

For most users, the metamodel is invisible, as it should be. However, it is still critical to a
select audience, because it facilitates the communication of the precise semantics of the
UML. This audience includes members of standards organizations, tool builders, authors,
and trainers. It is important to note that the metamodel supports extensibility of the UML
so that it may adapt to future advances in object-oriented analysis and design. As such,
this metamodel provides UML developers with a stable architecture for trying new
modeling problems: if one can model a complex problem easily within the context of the
metamodel, then the validity of the metamodel itself is further confirmed.

Thus, this document presents a semantic metamodel, not a tool metamodel. This means
that implementations must conform to this semantic metamodel, but may take the liberty
of representing the metamodel internally in different ways. By implication, a given
implementation may introduce new metamodel classes (for example, to cache values) as
well as collapse different metamodel classes into one. These differences notwithstanding,
every implementation must conform to the semantics of this metamodel, and must be able
to import and export full as well as partial models based upon this semantic metamodel.

1.3 CONVENTIONS
This document uses the UML notation and semantics to describe UML semantics.
Although this is a bit of a circular description (to understand the description of the UML
semantics, you must understand UML semantics), understanding this document is made
simple by the fact that only a subset of the UML is needed to describe UML semantics.
Specifically, UML semantics are described in about a dozen class diagrams, mostly
consisting of classes (including attributes and operations), associations (including
aggregation), and packages. Most classes appear in just one diagram, but some classes
(for example Type) appear in several. In general, each appearance of a class in a class
diagram presents only those attributes and operations that are relevant to that diagram; the

UML v 1.0, Semantics 3

complete interface of a class must be constructed from each appearance of that class
across all diagrams.

This document provides a formal description of UML semantics, but is pragmatic about
how far it takes this formalism. For example, the description of UML semantics includes
phrases such as “The responsibility of X is …” and “X is a Y.” In each of these cases, the
usual English meaning is assumed, although a deeply formal description would demand a
specification of these semantics of even these simple phrases. As much as possible, the
description of UML semantics avoids arcane terms. There are two exceptions to this
principle: the use of the terms “manifest” and “face.” In this context, “manifest” means
“to make explicit,” and “face” refers to the most significant or prominent surface of an
element, especially one used for interaction or communication. The opposite of manifest
is implicit.

Thus, the metamodel for the UML is described in a combination of natural language
(English) text and class diagrams, written using the UML itself. We recognize that there
are theoretical limits to what one can express about a metamodel using the metamodel
itself. However, our experience suggests that this combination strikes a reasonable
balance between expressiveness and readability for the intended audience.

4 UML v 1.0, Semantics

2. CORE CONCEPTS: COMMON ELEMENTS

Owns

+ visibility : Visibility

References

+ alias : Name
+ visibility : Visibility

1..*
ModelElement

0..*
ViewElement

1..* 0..*

projection

Visibility

+ value : {public, protected, private, implementation}

<<enumeration>>

Element

Elements are the basic building blocks of the UML. Elements include model elements (which are abstractions drawn
from the system being modeled) as well as view elements (which are textual and graphical projections of these model
elements). Elements may be organized into packages, which own and reference elements. A model is a semantically
closed abstraction of a system, represented by a top-most package.

0..1
Name

0..1

0..*

0..1

0..*

Element
0..10..1

name

0..*

1..*

Package

0..*

0..1

owns

0..*

0..*

references

0..1
0..*

Dependency

0..1

0..*

Stereotype

1

0..*

Model

+ contents () : List of Element

1..*

0..1
represents

1

0..1
System

0..*

0..1
trace

0..*

1
define

0..* 1

abstraction
0..1

0..*

subordinate

subsystem

0..*

2.1 DESCRIPTION
This diagram describes the basic building blocks of the UML, and includes the following
metamodel classes:

Dependency Dependency is a unidirectional using relationship from a
source (or sources) to a target (or targets).

Element An element is an atomic constituent of a model.

Model A model is a semantically closed abstraction of a system.

ModelElement A model element is an abstraction drawn from the system
being modeled.

Name A name is a string.

UML v 1.0, Semantics 5

Owns Owns is a composite aggregation of a package to a
collection of elements. A package owns elements. Visibility
is how the associated element is seen from outside its
enclosing package.

Package A package is a general purpose mechanism for organizing
elements into semanically related groups

References References is a shared aggregation of a package to a
collection of elements. A package references elements.
Alias is a new name and visibility is the new visibility for
the element in the context of its reference.

Stereotype A stereotype is the classification of an element. A
stereotype has semantic impact. Certain stereotypes are
predefined in the UML; others may be user defined.

System A collection of connected units that are organized to
accomplish a specific purpose. A system can be described
by one or more models, possibily from different
viewpoints.

ViewElement A view element is a textual and graphical projection of a
collection of model elements.

Visibility Visibility is an enumeration whose value (public, protected,
private, or implementation) denotes how the element to
which it refers is seen outside its enclosing name space.

This diagram also introduces the following relationships:

abstraction Abstraction is a composite aggregation of a system to a
collection of models. A model is an abstraction of a system.

define Define is a composite aggregation of a system to a
collection of stereotypes A system defines stereotypes.

generalization Model is a subtype of element.

Model element is a subtype of element.

Package is a subtype of model element.

System is a subtype of element.

View element is a subtype of element.

name Name is a composite aggregation of an element to a name.
A name is the name of an element.

owns Owns is a composite aggregation of a package to a
collection of elements. A package owns elements.

6 UML v 1.0, Semantics

projection Projection is a shared aggregation of a view element to a
collection of model element. A projection provides both the
placement and the style of presentation of each model
element within a view element

references References is a shared aggregation of a package to a
collection of elements. A package references elements.

represents Represents is the association of a model to a top-most
package. A top-most package represents a model.

subordinate Subordinate is a shared aggregation of a system to a
collection of systems. The subordinate systems are the
subsystems of the system.

trace Trace is a composite aggregation of a system to a collection
of dependencies, each of which represents a trace among
elements in different models. A dependency traces from
element to element.

2.2 BASIC SEMANTICS
Element is the abstract base class for most constituents of the UML. The responsibility of
Element is to provide an anchor upon which a number of common mechanisms may be
attached. Each Element instance may have associated with it no more than one Name
instance, whose purpose is to uniquely name the Element instance in the context of the
name space that encloses the Element instance. The default name of an Element instance
that has a name is the null name.

Certain Element instances in this metamodel have attributes; all participate in various
relationships. For well-formed models, every attribute value of every Element instance
must have a well-defined value. For this reason, all attributes must be given a default
value as described in this document; some of these values may represent null values.
Implementations are free to extend any enumeration type used in the metamodel by
adding new enumerations at the end of the predefined ones. Implementations are also free
to mark any attribute value or any relationship as unspecified, although such models are
considered incomplete and therefore not well-formed.

Element instances are unique, even if they have the same value for their Name instance.
This means that, within a Model instance, all Element instances are related by reference,
not by name, unless otherwise specified. Thus, changing the value of a Name instance
associated with an Element instance does not change any references to the Element
instance (although it does change what that Element instance is called). Across Model
instances, however, Element instances are related by name. Furthermore, when
transferring partial models, relationships at the edge of these partial models are broken by
using name matching, not reference matching. In this manner, it is possible to export
Element instances without having to transfer the transitive closure of all the other
Element instances with which it has relationships.

UML v 1.0, Semantics 7

The responsibility of ModelElement is to representing an abstraction drawn from the
system being modeled. The responsibility of ViewElement is to provide a textual and
graphical projection of a collection of ModelElement instances. Both ModelElement and
ViewElement are abstract subtypes of Element, and in fact the two are the only
immediate subtypes of Element. Projection provides the mapping of ModelElement
instances to ViewElement instances. Every ModelElement instance may be projected into
zero or more ViewElement instances, and every ViewElement instance may be the
projection of one or more ModelElement instances.

Package is a subtype of ModelElement. The responsibility of Package is to provide a
general purpose grouping mechanism. Collectively, all of the Element instances that are
owned or referenced by a Package instance are called its contents. A Package instance
defines a name space, meaning that the immediate contents of a Package instance must
have names or aliases that are unique for each kind of content. A Package instance has no
semantic meaning, meaning that the Package instance only serves to partition a set of
Element instances in the context of a Model instance, and that this partitioning disappears
in the executable system.

Owns is a composite aggregation of a Package instance over a collection of Element
instances. A given Package instance may own zero or more Element instances, and every
Element instance is owned by no more than one Package instance. Since Package is a
subtype of ModelElement, a Package instance may own or reference other Package
instances. Only one Element instance is not owned by a Package instance, namely, the
top-most Package instance represented by a Model instance.

The responsibility of Owns is to establish how a given Element instance may be seen by
Element instances that are outside its owning Package instance. The visibility attribute of
Owns specifies whether the corresponding Element instance is public, protected, private,
or implementation. In the absence of any specification, the owned Element instance is
considered to have public visibility.

References is a shared aggregation of a Package instance over a collection of Element
instances. A given Package instance may reference zero or more Element instances, and
every Element instance may be referenced by zero or more Package instances. In this
context, reference means that the referenced Element instance is visible in the Package
instance that imports it, and may be used just as if it were owned by the importing
Package instance. Whereas destroying a Package instance destroys the Element instances
it owns, destroying a Package instance does not destroy the Element instances it
references (although it does destroy the references).

The responsibilities of References are to provide a mechanism for renaming a referenced
Element instance and to establish how a given Element instance may be seen by Element
instances that are outside its referencing Package instance. The alias attribute of
References specifies a new name for the referenced Element instance, typically to provide
a more meaningful name or to resolve a name clash. Alias is a renaming and as such does
not introduce a synonym, meaning that the original simple name may not be used directly

8 UML v 1.0, Semantics

in the referencing Package instance. The visibility attribute of References specifies
whether the corresponding Element instance is public, protected, private, or
implementation. A given referenced Element instance may be given a visibility that is
equal to or more restrictive than its visibility in the context of the owning or referenced
Package instance from which it is referenced. In the absence of any specification, the
referenced Element instance is not renamed and is considered to have the same visibility
as from the context of the owning or referenced Package instance from which it is
referenced.

Visibility is an enumeration. The responsibility of Visibility is to enumerate the degrees
to which an Element instance may be seen outside its enclosing name space. The UML
defines four degrees of visibility, named in order of least restrictive to most restrictive; a
given implementation of the UML may extend the value of Visibility. The default value
of a Visibility instance is public.

In the context of a Package instance, an Element instance that is visible is one to which
implicit and explicit Relationship instances may be established. The public contents of a
Package instance are visible to any Element instance directly outside the Package
instance. Additionally, a Package instance creates a wall around its contents whereby
nothing outside the Package instance is visible to the contents of the Package instance
unless implicitly or explicitly imported.

Implementation visibility means that the corresponding Element instance is not visible
outside the Package instance that owns or references it, nor to the contents of any Package
instance that imports it, not even to Package instances that have friend Dependency
instances to the given Package instance. . Private visibility means that the corresponding
Element instance is not visible outside the Package instance that owns or references it,
but is visible to the contents of any Package instance that implicitly or explicitly imports
that Package instance and that has a friend Dependency instance to that Package instance,
where friend is a stereotyped Dependency. In this manner, the friend Dependency
instance extends the visibility of an implicit or explicit import of the contents of one
Package instance to another. Protected visibility means that the corresponding Element
instance is not visible outside the Package instance that owns or references it, but is
visible to the contents of any Package instance that has a Generalization instance to that
Package instance or that implicitly or explicitly imports that Package instance and that
has a friend Dependency instance to that Package instance. In this manner, the
Generalization instance establishes an implicit import of the contents of one Package
instance to another. Public visibility means that the corresponding Element instance is
visible to any Element instance directly outside the Package instance as well as to the
contents of any Package instance that has a friend Dependency instance, a Generalization
instance, or an explicit import Dependency instance to that Package instance, where
import is a stereotyped Dependency.

The contents of a Package instance may include other Package instances, and this nesting
establishes an implicit import of the contents of the nested Package instance to the outer
Package instance. Thus, the semantics of visibility are transitive. For example, consider a

UML v 1.0, Semantics 9

public Package instance P1 and a private Package instance P2 both owned by Package
instance P3, and another Package instance P4 which has an import Dependency instance
to P3. The public contents of P1 and P2 are not visible to one another (because there
exists no implicit or explicit import relationship between the two). The public contents of
P1 and P2 are visible to the other direct contents of P3 (because the nesting establishes an
implicit import). Furthermore, the public contents of P3 are visible to the contents of P4
(because P4 explicitly imports P3); this includes P1 and its public contents (because
visibility is transitive), but not P2 (because it is private relative to P3).

Model is a subtype of Element, representing a semantically closed abstraction of a
system. The responsibility of Model is to name an interesting quanta of Element instances
that collectively provide an abstraction of a System instance and that are nearly
independent of any other quanta. The meaning of “interesting” is entirely conceptual and
is relevant only to the stakeholder viewing the given Model instance. A Model instance is
semantically closed and its Element instances are nearly independent in the sense that
these instances can be understood in isolation, and that the only Relationship instances
that may exist across Element instances that are a part of different Model instances are
trace Dependency instances, where trace is a stereotyped Dependency. The default name
of a Model instance is the null name.

Represents is a shared aggregation of a Model instance to a top-most Package instance.
The responsibility of Represents is to connect a Model instance to a single top-most
Package instance and transitively all of its contents.

System is a subtype of Element representing a collection of connected units that are
organized to accomplish a specific purpose. A system can be described by one or more
models, possibly from different viewpoints. The responsibilities of System are to name a
real world domain that is to be abstracted by zero or more Model instances, to hold all of
the trace Dependency instances that cut across these Model instances, and to define all of
the Stereotype instances that apply to all of the Element instances representing these
Model instances. The conceptual boundaries of a System instance are entirely up to the
stakeholder viewing the System instance, and thus a System instance from one
perspective might be a subsystem from another perspective, denoted as an Element
instance in the abstraction of some larger System instance. The default name of a System
instance is the null name.

Abstraction is a composite aggregation of a System instance to a collection of Model
instances. Every Model instance is the abstraction of exactly one System instance, and
every such System instance may be abstracted by zero or more Model instances.

Subordinate is a shared aggregation of a system to a collection of systems. The
responsibility of subordinate is to specify the subsystems of a system.

A System instance defines a name space, meaning that the trace Dependency instances
held by the System instance must have unique names and that the Stereotype instances
defined by the System instance must have unique names. Trace is a composite

10 UML v 1.0, Semantics

aggregation of a System instance to a collection of trace Dependency instances; define is
a composite aggregation of a System instance to a collection of Stereotype instances.

2.3 DERIVED SEMANTICS
The semantics of Name are described in section 4.

The semantics of Stereotype and Dependency are described in section 3.

The semantics of all ModelElement subtypes are described in sections 5 through 11. The
semantics of all ViewElement subtypes and the projection aggregation are described in
section 12.

As described in section 3, Element instances may participate in relationships defined by
Dependency. Furthermore, Stereotype, TaggedValue, Note, and Constraint instances may
be attached to any Element instance. By implication, any ModelElement or ViewElement
instance may participate in these Dependency instances and have these parts since
ModelElement and ViewElement are both subtypes of Element. As described in section
6, there are additional kinds of relationships that apply to certain subtypes of
ModelElement.

Since Package is a subtype of ModelElement, Package instances may participate in
Dependency instances. The only meaningful kind of Dependency instances that may
involve Package instances are friend, import, and trace Dependency instances. As
described in section 6, Package is specified as a subtype of GeneralizableElement (but not
as a participant in an Association relationship),and so Package instances may also
participate in Generalization instances. The semantics of Package generalization are
described in section 6.

Package instances may own and reference Element instances; however, not all kinds of
Element instances may be owned or referenced by a Package instance. Specifically,
Model and System are subtypes of Element, but no Package instance may own or
reference a Model or System instance. In general, a Package instance may own or
reference only Type, Relationship, Behavior, and Collaboration instances (including
subtypes of each of these metamodel classes). As described in section 5, for example, this
encompasses UseCase and Class, both of which are subtypes of Type; thus, for example,
a Package instance may often own or reference UseCase instances. A UseCase instance
associated with a Package instance must conform with any lower level UseCase instances
that might be attached to the contents of the Package instance. Furthermore, UseCase
instances at lower levels may be traceable to UseCase instances at higher levels.

As described below, importing is an explicit stereotyped Dependency among Package
instances. However, there is no corresponding explicit export relationship. Rather, a
Package instance is said to implicitly export all of the visible Element instances it owns
or references.

UML v 1.0, Semantics 11

As subtypes of Element, Model and System instances may have Stereotype,
TaggedValue, Dependency, Note, and Constraint instances attached to them.

Not every class in the UML metamodel is a subtype of Element. Any part that does not
stand alone (for example, Name) is not an Element. Such parts are always reachable in a
System instance, because they are always guaranteed to be a part of some Element
instance. Furthermore, any part that is outside of a model is not an Element. Thus, the
following metamodel classes are not subtypes of Element and may not participate in
Dependency relationships nor have attached Stereotype, TaggedValue, Note, or
Constraint instances:

ActionExpression
ActualArgument
Boolean
BooleanExpression
Concurrency
Expression
FormalParameter
GeneralizableElement

List
Members
Multiplicity
Name
Nested
Owns
Point
Projection

References
Signals
TimeExpression
TypeExpression
Uninterpreted
Visibility

As a Model instance is evolved, it is common for its contents to at times be incomplete
and possibly self-inconsistent. Furthermore, it is common to interchange complete Model
instances as well as partial Model instances. In such cases, references to distant Element
instances (meaning, Element instances that are not part of the transfer but are in some
manner used by those parts in the transfer) must be stubbed. How this is done is outside
the scope of the core UML semantics.

2.4 STANDARD ELEMENTS
There are six standard stereotypes that apply to the metamodel classes described in this
diagram:

Name Applies to Semantics
derived Dependency A derived dependency is a stereotyped

Dependency whose source and target are both
elements, usually but not necessarily of the
same type. A derived dependency specifies that
the source is derived from the target, meaning
that the source is not manifest, but rather is
implicitly derived from the target.

facade Package A facade is a stereotyped Package that only
references (and never owns) elements.

friend Dependency A friend dependency is a stereotyped
Dependency whose source is a package and
whose target is a different package. A friend

12 UML v 1.0, Semantics

dependency extends the visibility of an implicit
or an explicit import of the contents of one
Package instance to another.

import Dependency An import dependency is a stereotyped
Dependency whose source is a package and
whose target is a different package. An import
dependency causes the public contents of the
target package to be referenceable in the source
package.

stub Package A stub package is a stereotyped Package
representing a package that is incompletely
transferred.

trace Dependency A trace dependency is a stereotyped
Dependency whose source is a model element
in one model and whose target is a model
element in the same or a different model. A
trace dependency is the only kind of
relationship that may span model boundaries.
A trace dependency indicates that the source
conceptually traces back to the target.

There is one standard tagged value that applies to the metamodel classes described in this
diagram:

Name Value Applies to Semantics
documentation String Element Documentation is a

comment, description, or
explanation of the Element
instance to which it is
attached.

UML v 1.0, Semantics 13

3. CORE CONCEPTS: COMMON MECHANISMS

A small number of common mechanisms exist within the UML, serving to make the UML simple and to give it a sense of
conceptual integrity. These common mechanisms include stereotypes, tagged values, notes, constraints, dependency
relationships, and the type/instance and type/class dichotomies (the latter of which arespecified in the package
Structural Elements).

Dependency

+ mapping : Uninterpreted

ModelElement

Relationship

tagset

0..1

name : Name

0..*

source

0..*

target

0..*

source
0..*

Note

+ value : Uninterpreted

target
0..*

source
0..*

Constraint

+ value : Uninterpreted

target
0..*

0..*

TaggedValue

+ value : Uninterpreted

name : Name

0..1

0..*

tagset

0..1

name : Name

0..1

Stereotype

+ value : Uninterpreted 0..*
Element

0..* 0..*

dependency

0..*0..*

/dependency

0..*

0..*

/dependency

0..*

name : Name

0..1
characteristic

0..1 0..*

classification

3.1 DESCRIPTION
This diagram describes the common mechanisms of the UML, and includes the following
metamodel classes:

Constraint A constraint is a condition or restriction attached to an
element or a collection of elements. A constraint has
semantic impact. Certain constraints are predefined in the
UML; others may be user defined.

Dependency Described in section 2

Element Described in section 2

ModelElement Described in section 2

Note A note is a comment attached to an element or a collection
of elements. A note has no semantic impact.

14 UML v 1.0, Semantics

Relationship A relationship is a semantic connection among elements.

Stereotype Described in section 2

TaggedValue A tagged value is a name/value pair denoting a
characteristic of an element. A tagged value has semantic
impact. Certain tagged values are predefined in the UML;
others may be user defined.

This diagram also introduces the following relationships:

dependency Dependency is a unidirectional using relationship from a
source (or sources) to a target (or targets). A source has a
dependency on a target.

A note may be the source of a dependency.

A constraint may be the source of a dependency

characteristic Characteristic is a composite aggregation of an element to a
collection of tagged values. A tagged value is a
characteristic of an element.

classification Classification is a shared aggregation of an element to zero
or one stereotypes. A stereotype is the classification of an
element.

generalization Constraint is a subtype of model element.

Dependency is a subtype of relationship.

Note is a subtype of model element.

Tagged value is a subtype of model element.

Relationship is a subtype of model element.

Stereotype is a subtype of model element.

tagset Tag set is a composite aggregation of a tagged value to a
collection of tagged values. A tagged value may be the tag
set of a collection of tagged values

3.2 BASIC SEMANTICS
Stereotype is a subtype of ModelElement. The responsibilities of Stereotype are to
provide a classification and to optionally establish additional semantics and visual cues
for the Element instance to which it is attached. The name of a Stereotype instance is a
Name representing the name of the Stereotype instance; its value must not be a null name.
The value attribute of Stereotype is Uninterpreted and typically is used to establish new
semantics and visual cues for the Element instance to which the Stereotype instance is
attached. A Stereotype instance has semantic impact. Certain stereotypes are predefined

UML v 1.0, Semantics 15

in the UML; others may be user defined. The semantics of all predefined stereotypes are
specified in the UML; the semantics of all user defined stereotypes cannot be enforced by
the UML

Stereotype is one of the three extensibility mechanisms of the UML, permitting a modeler
to extend the classes of the UML metamodel in controlled ways. Specifically, an Element
instance E classified by Stereotype instance S is semantically equivalent to a new
metamodel class with the same name as S and whose supertype is the Element instance E.
Every predefined stereotype in the UML could have been written explicitly as a new
metamodel class whose supertype is the metamodel class to which the stereotype applies.
Taken to its natural conclusion, the UML could have been defined by exactly two classes
- Thing and Stereotype - with all other metamodel concepts derived as stereotyped Thing
instances. This would have been technically correct but practically unapproachable.
Therefore, the philosophy taken in the UML is this: all fundamental metamodel concepts
that embody sufficiently interesting semantics and that have complex relationships with
other concepts are expressed as distinct metamodel classes. Furthermore, any metamodel
concept that can be expressed as a simple subtype of these more fundamental metamodel
concepts is treated as a stereotype.

Classification is a shared aggregation of an Element instance to no more than one
Stereotype instance. The responsibility of Classification is to attach a Stereotype instance
to an Element instance. Every Element instance may have at most one Stereotype
instance, and every Stereotype instance may be attached to zero or more Element
instances.

TaggedValue is a subtype of ModelElement. The responsibility of TaggedValue is to
provide a characteristic of the Element instance to which it is attached. The name of a
TaggedValue instance is a Name representing the name of the TaggedValue instance; its
value must not be a null name. The value attribute of TaggedValue is Uninterpreted. A
TaggedValue instance has semantic impact. Certain tagged values are predefined in the
UML; others may be user defined. The semantics of all predefined tagged values are
specified in the UML; the semantics of all user defined tagged values cannot be enforced
by the UML.

TaggedValue is the second of three extensibility mechanisms of the UML, permitting a
modeler to extend the attributes of the classes of the UML metamodel in controlled ways.
Specifically, an Element instance E with the characteristic TaggedValue instance T is
semantically equivalent to the metamodel class E but with a new attribute whose name
and type are the name and value of T. Every predefined tagged value in the UML could
have been written explicitly as a new attribute in the metamodel class to which the tagged
value applies. Taken to its natural conclusion, the UML could have been defined with no
attributes but will all characteristics of metamodel classes derived as TaggedValue
instances. This too would have been technically correct but practically unapproachable.
Therefore, the philosophy taken in the UML is this: all fundamental metamodel class
characteristics that embody sufficiently interesting semantics are expressed as distinct
attributes.

16 UML v 1.0, Semantics

Characteristic is a composite aggregation of an Element instance to zero or more
TaggedValue instances. The responsibility of characteristic is to attach a collection of
TaggedValue instances to an Element instance. Every Element instance may have zero or
more TaggedValue instances, and every TaggedValue instance may be attached to zero or
one Element instances. This aggregation is qualified by the name of the TaggedValue
instance, meaning that every TaggedValue instance attached to a given Element instance
is uniquely reachable by its name.

Tagset is a composite aggregation of a TaggedValue instance to a collection of
TaggedValue instances. The composite TaggedValue instance is known as a tagset,
because it represents a set of TaggedValue instances. The responsibility of Tagset is to
establish a name for a set of related TaggedValue instances. Every TaggedValue instance
is thus either directly the characteristic of an Element instance or a member of a tagset.
This is a recursive relationship: TaggedValue instances may define tagsets, and members
of these tagsets may themselves define tagsets. This aggregation is qualified by the name
of the TaggedValue instance, meaning that every TaggedValue instance in a tagset is
uniquely reachable by its name. TaggedValue thus defines a name space, meaning that all
TaggedValue instances in a tagset defined by a TaggedValue instance must have unique
names.

Relationship is an abstract subtype of ModelElement. The responsibility of Relationship
is to establish a semantic connection among Element instances.

Dependency is a subtype of Relationship and is a unidirectional using relationship from a
source (or sources) to a target (or targets). The responsibility of Dependency is to name a
using relationship wherein the source Element instance (or instances) relies upon the
semantics of the target Element instance (or instances). Dependency is thus a many-to-
many relationship among types. The name of a Dependency instance is a Name
representing the name of the Dependency instance; the name of a Dependency instance is
optional, but where it exists it must not be a null name. The mapping attribute of
Dependency is Uninterpreted, and is used to record the binding of characteristics of the
source from the target. Establishing a Dependency instance between a source and target
establishes a unidirectional semantic connection from the source to the target, meaning
that if the target is destroyed or its semantics modified, then the source is impacted, the
nature of that impact depending upon the specific stereotype of Dependency. For a simple
Dependency instance, if all of its sources or all of its targets are destroyed, the
Dependency instance is in turn destroyed; there may be no dangling Dependency
instances.

Note is a subtype of ModelElement. The responsibility of Note is to provide a comment
upon an Element instance or a collection of Element instances. A Note instance has no
semantic impact, but may be used by a modeler to attach conceptually interesting
information to an Element instance or instances. A Note instance does not have a name.
The value attribute of Note is Uninterpreted. Because a Note is a subtype of Element, it
may participate in Dependency relationships. A Note instance is attached to other
Element instance via a Dependency instance, wherein the Note instance (or instances) is

UML v 1.0, Semantics 17

the source (or sources) and the Element instance (or instances) to which it is attached is
the target (or targets) of the Dependency instance. Thus, the dependency relationship
between Note and Element in the diagram is not manifest, but rather is derived from the
dependency relationship that is defined for Element.

Constraint is a subtype of ModelElement. The responsibility of Constraint is to provide a
condition or restriction upon an Element instance or a collection of Element instances. A
Constraint instance has semantic impact, and may be used by a modeler to attach new
semantic constraints to an Element instance or instances. A constraint instance does not
have a name. The value attribute of Constraint is Uninterpreted. Because a Constraint is a
subtype of Element, it may participate in Dependency relationships. A Constraint instance
is attached to other Element instance via a Dependency instance, wherein the Constraint
instance (or instances) is the source (or sources) and the Element instance (or instances)
to which it is attached is the target (or targets) of the Dependency instance. Thus, the
dependency relationship between Constraint and Element in the diagram is not manifest,
but rather is derived from the dependency relationship that is defined for Element. A
Constraint instance has semantic impact. Certain constraints are predefined in the UML;
others may be user defined. The semantics of all predefined constraints are specified in
the UML; the semantics of all user defined constraints cannot be enforced by the UML.

Constraint is the third of the three extensibility mechanisms of the UML, permitting a
modeler to extend the semantics of the UML in controlled ways. Specifically, an Element
instance E with the Constraint instance C is semantically equivalent to the metamodel
class E but with new semantics whose value is the value of C. Every semantic concept in
the UML could have written explicitly as a new constraint upon the metamodel class to
which the constraint value applies. Taken to its natural conclusion, the UML could have
been defined with minimal semantics but will all semantics derived as Constraint
instances. This would have been technically correct but practically unapproachable.
Therefore, the philosophy taken in the UML is this: all fundamental metamodel class
semantics that are sufficiently interesting are expressed as distinct semantics.

3.3 DERIVED SEMANTICS
The semantics of Element and ModelElement are described in section 2.

As described in section 2, Element defines a name space. Therefore, all Dependency
instances for which a given Element instance is a source or a target must have a unique
name. A Dependency instance with no name is always considered to have a unique name,
distinct from any other Dependency instance with no name. Similarly, all TaggedValue
instances that establish a characteristic of a given Element instance must have a unique
name. As described in section 2, Stereotype instances are defined in the context of a
System instance, and so all Stereotype instances within a System are already guaranteed
to have unique names.

The rule that every Element instance may have at most one Stereotype instance was
introduced to simplify the semantics of this extensibility mechanism, because it is based

18 UML v 1.0, Semantics

upon single inheritance into the metamodel. As described in section 6, Stereotype
instances may participate in Generalization relationships, and thus it is possible for a
modeler to establish lattices of Stereotype instances, thereby achieving the effect of
multiple inheritance into the metamodel. By restricting Element instances to have at most
one Stereotype instance but allowing lattices of Stereotype instances, the semantics of
multiple Stereotype instances are made the concern of the metamodel who creates these
Stereotype instances instead of the modeler who uses these instances.

TaggedValue instances are commonly used to establish the semantics of mapping a
ModelElement instance to a traditional programming language.

There are five concrete subtypes of Relationship. Three of these (Association,
Dependency, and Generalization) are structural elements and two of these (Transition and
Link) are behavioral elements. The semantics of Association and Generalization are
described in section 6. The semantics of Transition are described in section 10. The
semantics of Link are described in section 11.

Dependency is a subtype of Element, and so as described in section 2, a Dependency
instance may be owned or referenced by a Package instance. A Dependency instance
whose sources and targets are all owned by the same Package instance is clearly owned
by the same Package instance. A Dependency instance need not be owned by any of the
Package instances that own its sources and targets. Thus, a Dependency instance is owned
by the smallest name space containing the source and the target. According to the
semantics of visibility as described in section 2, a Dependency instance may only be
established among sources and targets if and only if those sources and targets are visible.
Furthermore, a Dependency instance at least one of whose sources or targets is owned by
a different Package instance than the other sources and targets spans the boundaries of its
owning Package instance. This introduces further dependencies among the owning
Package instances: thus, if all of the Package instances that own the sources or the targets
of the Dependency instance are themselves destroyed, then the Dependency instance is in
turn destroyed.

The mapping attribute of Dependency plays a role in various stereotypes of Dependency,
as described in section 5 and 7.

Visually, a note may be used to project any property of a model. In such cases, a Diagram
instance may project a Note instance that is not itself part of a System instance, but rather
exists just as a holder for the textual and graphical projection of some other Element
instance property. For example, a note might appear in Diagram instance to display a
TaggedValue instance or a Constraint instance.

Stereotype, TaggedValue, Dependency, Note, and Constraint are all subtypes of Element,
and so themselves may have Stereotype, TaggedValue, Dependency, Note, and Constraint
instances attached to them.

UML v 1.0, Semantics 19

The predefined stereotypes, tagged values, and constraints constitute the standard
elements of the UML. These standard elements are introduced in subsection 4 of each
section and again are summarized in section 13.

3.4 STANDARD ELEMENTS
There are two standard stereotypes that apply to the metamodel classes described in this
diagram:

Name Applies to Semantics
constraint Note A constraint is a stereotyped Note that states a

constraint.

requirement Note A requirement is a stereotyped Note that states
a responsibility or obligation.

There is one synonym that applies to the metamodel classes described in this diagram:

Synonym Definition
property A property is any part of an element.

20 UML v 1.0, Semantics

4. CORE CONCEPTS: COMMON TYPES

Common types constitute all of the abstractions that lie at the fringe of the UML and encapsulate it from any
implementation-specific usage.

Boolean
<<enumeration>> Expression List Multiplicity

Point

Uninterpreted

Name TimeString

4.1 DESCRIPTION
This diagram describes the common types of the UML, and includes the following
metamodel classes:

Boolean A Boolean is an enumeration whose values are false and
true.

Expression An expression is a string.

List A list is a container whose parts are ordered and can be
indexed.

Multiplicity A multiplicity is a non-empty set of the non-negative
integers extended by a token representing unlimited. Every
multiplicity instance has a corresponding string
representation.

UML v 1.0, Semantics 21

Name Described in section 2

Point A point is an (x, y, z) tuple naming a position in space.

String A string is a stream of text.

Time A time is a string representing an absolute or relative
moment in time andspace.

Uninterpreted An uninterpreted is a blob, the meaning of which is
domain-specific. Every uninterpreted instance has a
corresponding string representation.

4.2 BASIC SEMANTICS
Boolean is an enumeration whose values are false and true. The responsibility of Boolean
is to provide a binary value that can be used for attribute type expressions and in guard
conditions.

Expression is a string. The responsibility of Expression is to provide a string representing
a value. Expression is an abstract class, and every Expression instance evaluates to some
value whose type is specified by the Expression subtype. An Expression instance need not
be static, but may include Name instances drawn from the scope enclosing the Expression
instance. The syntax of a well-formed Expression instance is outside the scope of the
UML

List is a container whose parts are ordered and can be indexed. The responsibility of List
is to provide a collection of Element instances. The operations applicable to a List
instance are outside the scope of the UML.

Multiplicity is a non-empty set of the non-negative integers extended by a token
representing unlimited. an open range of non-negative integers. The responsibility of
Multiplicity is to specify the range of allowable cardinalities that a set may assume. A
Multiplicity instance need not be static, but may include Name instances drawn from the
scope enclosing the Multiplicity instance. A Multiplicity that includes a name must have
a binding for that name sometime before execution time. The syntax of a Multiplicity
instance string representation is specified according to the following production rules:

multiplicity ::= [interval | number]{‘,’ multiplicity}
interval ::= number “..” number

number ::= non_negative_integer | name | ‘*’

Thus, the string representation of a Multiplicity instance is basically a comma separated
list of intervals and numbers. An interval is a duple of numbers specifying the closed and
inclusive range of non-negative integers from a lower bound to an upper bound, both of
which are numbers. A number may be a non-negative integer literal, a Name instance
whose value resolves to a non-negative integer, or the star character which denotes an
unlimited bound. A multiplicity consisting of a single star denotes the unlimited non-

22 UML v 1.0, Semantics

negative integer range. Although not required, the string representation of a Multiplicity
instance normally specifies a monotonically increasing and non-overlapping range of
non-negative numbers.

Name is a string. The responsibility of Name is to provide an identification by which the
Element instance to which it is attached may be called uniquely in the context of its
enclosing name space. A Name instance is the simple name of the Element instance to
which it is attached. A null Name instance is the null string. All null Name instances are
considered unique.

Compound names may be formed through the catenation of simple names, according to
the following production rule:

compound_name ::= simple_name {‘.’ compound_name}

A compound name names a path from one Element instance to another. Since the name of
an Element instance is guaranteed to be unique only within the context of its enclosing
name space, the name of an Element instance may be qualified by the name of the
enclosing Package instance that owns or references the Element instance according to the
following production rule:

qualified_name ::= qualification “::” simple name
qualification ::= package_name {“::” qualification}

Point is an (x, y, z) tuple naming a position in space. The responsibility of Point is to
name a position wherein a ModelElement instance may be projected into a Diagram
instance. The origin point of a Diagram instance is the tuple (0, 0, 0), indicating the close
in upper left corner. The values of a Point instance tuple are non-negative integers
indicating the x, y, and z axis, respectively. The z value of a Point instance tuple may be
omitted, in which case a z value of 0 is assumed.

String is a stream of text. The responsibility of string is to provide a name for a stream of
text.

Time is a string representing an absolute or relative moment in time/space. The
responsibility of Time is to provide a name for a moment in time/space. The syntax of a
well-formed Time instance is outside the scope of the UML.

Uninterpreted is a blob, meaning that its value is a binary stream. The responsibility of
Uninterpreted is to isolate implementation-dependent properties of the UML. Every
Uninterpreted instance has a corresponding string representation, although the syntax of a
well-formed Uninterpreted instance is outside the scope of the UML. A null
Uninterpreted instance is the null string.

UML v 1.0, Semantics 23

4.3 DERIVED SEMANTICS
None of the classes described in this diagram are subtypes of Element.

There are four concrete subtypes of Expression: ActionExpression, BooleanExpression,
TimeExpression, and TypeExpression. The semantics of ActionExpression are described
in section 10. The semantics of BooleanExpression and TimeExpression are described in
section 10, and the semantics of TypeExpression are described in section 5. An
ActionExpression evaluates to an Action instance. A BooleanExpression instance
evaluates to a Boolean instance. A TimeExpression instance evaluates to a Time instance.
A TypeExpression instance evaluates to a Type instance.

As described in section 7, Type instances may own other Type instances via nesting, and
these semantics impact the semantics of qualified names.

4.4 STANDARD ELEMENTS
There is one synonym that applies to the metamodel classes described in this diagram:

Synonym Definition
simple name A simple name is a name.

24 UML v 1.0, Semantics

5. STRUCTURAL ELEMENTS: TYPES, CLASSES, AND
INSTANCES

Many model elements exhibit a common essence/manifestation, wherein the type denotes the essence of the
abstraction, and the instance denotes a concrete manifestation. There also exists a specification/realization dichotomy,
wherein classes and primitive types provide the realization of types.

ActiveClass

{implicit}

Signal

PrimitiveType

+ details : Uninterpreted

Component Node

ModelElement
(from Core Concepts)

Expression
(from Core Concepts)

TaggedValue
(from Core Concepts)

Class UseCase

0..*

TypeExpression

+ referencedTypes () : List of Type
1..*

0..*

Responsibility

0..1

0..*

Value

+ value : Uninterpreted

0..1

0..1

State
(from Behavioral Elements)

0..*
0..10..*

0..*

0..*

Type

+ multiplicity : Multiplicity 0..*1..*

references

0..*

0..1

/characteristic

0..*

Instance

0..*

0..1

values

0..1

0..*

state instance

0..10..*

instance of

0..*

0..*

roles

0..1

BehaviorInstance
(from Behavioral Elements)

0..*

0..1

actions

5.1 DESCRIPTION
This diagram describes the type/instance and the type/class relationships (two of the
essence/manifestation and specification/realization dichotomies of the UML,
respectively), and includes the following metamodel classes:

ActiveClass An active class is a class embodying one or more threads.

BehaviorInstance A behvior instance is a concrete manifestation of a
behavior.

Class A class is the realization of type.

Component A component is a reusable part that provides the physical
packaging of model elements

Expression Defined in section 4

UML v 1.0, Semantics 25

Instance An instance is a concrete manifestation of a type.

ModelElement Defined in section 2

Node A node is a run-time physical object that represents a
computational resource, generally having at least a memory
and often processing capability as well, and upon which
components may be deployed.

PrimitiveType A primitive type is a non-class type, such as an integer or
an enumeration.

Responsibility A responsibility is a contract by or an obligation of the type
to which it is attached.

Signal An signal is a named event.

State A state is the condition of an instance at a given moment in
time/space.

TaggedValue Described in section 3

Type A type is the specification of a domain together with
behavior applicable to that domain.

TypeExpression A type expression is an expression that resolves to the
reference of one or more types.

UseCase A use case is a set of sequences of actions a system
performs that yields an observable result of value to a
particular actor.

Value A value is the value of an expression.

This diagram also introduces the following relationships:

actions Actions is a shared association of an instance to its actions.
Temporal instances are manifest as a sequence of actions; a
behavior instance specifies the actions of an instance.

characteristic Defined in section 3

generalization Active class is a subtype of class

Class is a subtype of type.

Component is a subtype of class.

Instance is a subtype of model element.

Node is a subtype of class.

Primitive type is a subtype of type.

Responsibility is a subtype of tagged value.

26 UML v 1.0, Semantics

Signal is a subtype of class.

Type is a subtype of model element.

Type expression is a subtype of expression

Use case is a subtype of type.

instance of Instance of is an association between an instance and its
type, indicating that the instance is a concrete manifestation
of the type. An instance is an instance of a type.

references References is an association between a type expression and
a collection of types, indicating that the type expression
references a given type or types. A type expression
references one or more types.

roles Roles is a shared aggregation of an instance to a collection
of roles. At a moment in time/space, an instance plays zero
or more roles.

state instance State instance is a shared association of an instance to its
state. At a moment in time/space, an instance has a specific
state.

values Values is a composite aggregation of an instance to a
collection of values corresponding to the attributes of the
associated type. A value is the value of a type's attributes in
the context of a specific instance.

5.2 BASIC SEMANTICS
Type is a subtype of ModelElement. The responsibility of Type is to specify a domain
together with behavior applicable to that domain. The name of a Type instance is a Name
instance representing the name of the Type; its value may not be a null name. The
multiplicity attribute of Type is Multiplicity and is used to specify the number of
allowable Instance instances of the Type instance within a specific composite. The default
value of multiplicity is 0 .. *. A Type instance defines a name space.

Responsibility is a subclass of TaggedValue and thus is a predefined tagged value. The
responsibility of Responsibility is to indicate a contract by or an obligation of the Type
instance to which it is attached. The value attribute of Responsibility is a string indicating
the contract or obligation of the Type instance to which it is attached. A Responsibility
instance is attached to a Type instance via a characteristic relationship. This relationship
is not manifest, but rather is derived from the characteristic relationship that is defined
between TaggedValue and Element.

TypeExpression is a subtype of Expression. The responsibility of TypeExpression is to
provide an Expression instance that resolves to the reference of one or more Type
instances, where reference denotes a using rather than a defining occurrence of the Type

UML v 1.0, Semantics 27

instance. The operation referencedTypes returns a list of Type instance referenced by the
TypeExpression instance.

References is an association between a TypeExpression instance and a collection of Type
instances, indicating that TypeExpression instance references a collection of Type
instances. The responsibility of references is to establish the relationship between a Type
instance and the TypeExpression instances in which it is referenced. Every Type instance
may be referenced in zero or more TypeExpression instances, and every TypeExpression
instance references one or more Type instances. References is an implicit relationship,
meaning that it is not manifest but rather is derivable from the value of the
TypeExpression instance itself..

PrimitiveType is an abstract subtype of Type. The responsibility of PrimitiveType is to
specify a non-class type, such as an integer or an enumeration. The details attribute of
PrimitiveType is Uninterpreted and is intended to specify its realization. Implementations
of the UML must provide concrete subclasses of PrimitiveType

UseCase is a subtype of Type. The responsibility of UseCase is to specify a set of use
case instances, where a use case instance represents a sequence of actions a system
performs that yields an observable result of value to a particular actor.

Class is a subtype of Type. The responsibility of Class is to supply the realization of a
Type.

The separation of Type and Class constitutes the specification/realization dichotomy of
the UML. Whereas a Class instance supplies the realization of a Type instance, a Type
instance itself does not provide a realization. In this sense, a Type instance is the interface
of a Class instance. This type/class relationship extends to the subtypes of Class. Thus, a
given Type instance may be the interface to zero or more Class instances (including its
subtypes ActiveClass, Signal, Component, and Node), and a given Class instance
(including its subtypes ActiveClass, Signal, Component, and Node) may supply the
realization of zero or more Type instances. Since Class is a subtype of Type, a Class
instance is itself a Type instance. However, because Type and Class are independent
concepts, it is possible to model type and class lattices separately. As described in the
following section, refinement is a stereotyped Dependency relationship that specifies the
interface/supplier relationship among Type and Class instances.

ActiveClass is a subtype of Class. The responsibility of ActiveClass is to specify a Class
instance that embodies one or more threads.

Signal is a stereotyped Class. The responsibility of Signal is to specify a named event.

Component is a subtype of Class. The responsibility of Component is to specify a
reusable part that provides the physical packaging of ModelElement instances.

Node is a subtype of Class. The responsibility of Node is to specify a physical part upon
which Component instances may be deployed.

28 UML v 1.0, Semantics

Instance is a subtype of ModelElement. The responsibility of Instance is to specify the
concrete manifestation of a Type instance. Whereas a Class instance provides the
realization of a Type instance, an Instance instance corresponding to a Class instance
manifests a Type instance in time/space, meaning that the Instance instance represents an
entity that exists in time and space.

The name of an Instance instance is optional, but where it exists it must not be a null
name. An Instance instance defines a name space. By implication, the values, actions,
state instance, and roles associated with the Instance instance must have unique names
according to their kind.

Instance of is an association between an Instance instance and its Type instance. The
responsibility of instance of is to specify that the Instance instance is a concrete
manifestation of the Type instance. Every Type instance may have zero or more Instance
instances, and every Instance instance is the instance of not more than one Type instance.
In most cases, every Instance instance is the instance of exactly one Type instance.
However, it is possible to specify Instance instances that have no Type, as is often the
case in incomplete and/or evolving models.

Roles is a shared aggregation of an Instance instance to a collection of Type instances.
The responsibility of roles is to specify the role that the given Instance instance is playing
at a moment in time/space, where role in this context means the face or faces that the
Instance instance is presenting to its clients. Whereas an Instance instance is always the
instance of exactly one Type instance, the roles of an Instance instance may change.

Value is the value of an expression. The responsibility of Value is to reify a value. The
value attribute of Value is Uninterpreted, and its semantics are dependent upon the type
of the expression for which the Value instance supplies a value.

Values is composite aggregation of an Instance instance to a collection of Value
instances. The responsibility of values is to specify the static values of an Instance
instance according to values of the Instance instance that correspond to the Attribute
instances that are the members of associated Type instance of which the Instance instance
is an instance. Every Instance instance has zero or more Value instances and every Value
instance is the value of zero or one Instance instances. The number, name, and type of
each Value instance that is the value of an Instance instance must match the number,
name, and type of the Attribute instances of the associated Type instance of which the
Instance instance is an instance.

BehaviorInstance is the concrete manifestation of a behavior. The responsibility of
BehaviorInstance is to reify the occurrence of a temporal flow of actions.

Actions is shared association of an instance to its actions. Only instances of UseCase
instance have actions. The responsibility of actions is to specify the flow of actions
associated with a temporal Instance instance. Every Instance instance is associated with
zero or one Behavior instances and every Behavior instance is associated with zero or

UML v 1.0, Semantics 29

more Instance instances. The actions of an Instance instance must match with the possible
actions of the UseCase instance of which the Instance instance is a match.

State is the condition on an Instance instance at a given moment in time/space. The
responsibility of State is to reify a state.

State instance is a shared association of an Instance instance to its state. The
responsibility of state instance is to specify the static State instance of an Instance
instance. Every Instance instance is associated with zero or one State instances and every
State instance is associated with zero or more Instance instances. The state of an Instance
instance must match with the possible states of the Type instance of which the Instance
instance is an instance.

The separation of Type and Instance constitutes the essence/manifestation dichotomy of
the UML, wherein an Instance instance provides the manifestation of a Type instance.
This type/instance relationship extends to the subtypes of Type.

5.3 DERIVED SEMANTICS
The semantics of ModelElement are described in section 2.

The semantics of TaggedValue are described in section 3.

The semantics of Expression are described in section 4.

The semantics of Type are described in section 7.

The semantics of BehaviorInstance are described in section 10.

PrimitiveType is a subtype of Type, and so possesses all of the properties of a Type as
described in section 7.

A TypeExpression instance introduces a Dependency from the TypeExpression instance
to the Type instances it references. Because of the semantics of Name as described in
section 2, changing the Name instance associated with a referenced Type instance only
impacts the name that the TypeExpression instance sees; it does not replace the Type
instance itself. These semantics have important implications for matching the uses of
TypeExpression instances with the Type instances they reference. For example, as
described in section 7, Attribute instances may be members of Type instances, and
Attribute instances have a type attribute whose value is a TypeExpression. If, for
example, attribute A has type T, and if the name of T is changed to U, then A is still of
the same Type instance, but that Type instance has the new name U.

Class and its subtypes are subtypes of Type, and so possess all of the properties of a Type
as described in section 7. The semantics of Class and its subtypes ActiveClass,
Component, and Node are described in section 8. The semantics of the Class subtype
Signal is described in sections 7, 10, and 11.

30 UML v 1.0, Semantics

ActiveClass, Class, Component, Instance, Node, PrimitiveType, Responsibility, Signal,
State, Type, and Value are all subtypes of Element, and so may have Stereotype,
TaggedValue, Dependency, Note, and Constraint instances attached to them. Expression
and TypeExpression are not subtypes of Element and so may not have these properties.

Since UseCase is a subtype of Type, UseCase instances may participate in Generalization
and Association relationships as described in section 6. Among other things, this implies
that UseCase instances may be abstract as well as participate in relationships with other
Type instances, including actors (which are stereotyped Type instances) and other
UseCase instances. Also, as described in section 7, Member instances associated with a
Type instance may be specified to have a direction, indicating whether the Member
instance is provided or required of the Type instance.

An Instance instance with no name is always considered to have a unique name, distinct
from any other Instance instance with no name.

The roles relationship described in this section interacts with the semantics of refinement
as well as with the semantics of the role relationship described in section 6. Basically, the
Type instances for which another Type (or subtype of Type) instance is the refinement of
constitute the static interfaces of the refining Type instance. The role that a given refining
Type instance plays in an Association (as described in section 6) must be equal to or a
subset of these static interfaces; this is a statement of the static semantics of the refining
Type instance and the role that it plays in an Association instance. The roles relationship
described in this section must also be equal to or a subset of these static interfaces; this is
a statement of the dynamic semantics of the Instance instance. In other words, the
interface of a Type instance is static, but may be subsetted in a given context; further, the
interface of an Instance instance is dynamic, because at different moments in time, that
Instance instance plays a different role in the world.

Between each Type instance and its Instance instances, the values, actions, state instance,
and roles of the Instance instance must match the attributes, actions, states, and roles of
the associated Type instance. Matching a Value instance to an Attribute instance means
that that name and type of both much match. Matching a Behavior instance to a Behavior
instance means that the sequence of actions of the actions must be an instance of one of
the potential sequence of actions of the UseCase instance (and not more generally a Type
instance, since only UseCase instances are temporal). Matching a state instance to a State
means the state instance must be an instance of one of the potential states of the Type
instance. Matching a role instance to a Type means that the role instances must be one of
the potential roles of the Type instance.

Note that that State instance associated with an Instance instance represents an occurrence
of the State instance. This manifestation of a State instance is not made explicit, but
rather is a consequence of the semantics described in section 10, wherein State is a part of
StateMachine which is a kind of Behavior, and Behavior/BehaviorInstance provide an
explicit essence/manifestation dichotomy.

UML v 1.0, Semantics 31

A number of different kinds of essence/manifestation pairs appear in the UML.
Specifically, Class/Relationship, Association/Link, AssociationRole/LinkRole,
Attribute/Instance, Expression/Value, Parameter/Value, Signal/Message,
Operation/Message, and Behavior/BehaviorInstance define essence/manifestation pairs
that are manifest in the UML As with Type and Instance semantics, these pairs apply to
their subtypes as well.

5.4 STANDARD ELEMENTS
There are eight standard stereotypes that apply to the metamodel classes described in this
diagram:

Name Applies to Semantics
actor Type Actor is a stereotyped Type representing an

abstraction that lies just outside the system
being modeled.

becomes Dependency Becomes is a stereotyped Dependency whose
source and target are the same instance, but
each with potentially different values, state
instance, and roles. A becomes dependency
from A to A’ means that the instance A
becomes A’ (with its possibly new values, state
instance, and roles) at a different moment in
time/space.

copy Dependency Copy is a stereotyped Dependency whose
source and target are different instances, but
each with the same values, state instance, and
roles (but a distinct identity). A copy
dependency from A to B means that B is an
exact copy of A. Future changes in A are not
necessarily reflected in B.

enumeration PrimitiveType Enumeration is a stereotyped PrimitiveType.
The details of an enumeration specify a domain
consisting of a set of identifiers.

instance Dependency Instance is a stereotyped Dependency whose
source is an instance and whose target is a type.
An instance dependency from I to T means that
I is an instance of T.

interface Type An interface is a stereotyped Type.

refinement Dependency Refinement is a stereotyped Dependency
whose source is a type, class, collaboration, or
method and whose target is a type,
collaboration, or operation. The mapping

32 UML v 1.0, Semantics

attribute is used to match properties of the
source to the target. A refinement relationship
whose target is a collaboration may only have a
collaboration as a source. A refinement whose
target is an operation may only have an
operation or a method as a source. This
relationship specifies that the source is a
refinement of the target, meaning that the
source maps to the target but with additional
information introduced. For example, a class
refines a type, meaning that the class conforms
to the type but adds additional information
(namely, the realization of the type). Similarly,
a method refines an operation, meaning that the
method conforms to the operation but supplies
a realization. As with any dependency,
refinement may involve multiple sources and
targets. Thus, a single class may be specified as
the refinement of multiple types. In the case of
a refinement whose source is a type or a class
(and thus whose target must be a type), the
source is called the supplier and the target is
called the interface. Thus, we may say that the
refinement of a type by a class means that the
class supplies the interface specified by the
type. These semantics apply to the subtypes of
class as well. For example, we may say that a
component supplies the interface specified by a
collection of types.

signal Class Signal is a stereotyped Class that specifies a
named event.

There are two standard tagged values that apply to the metamodel classes described in
this diagram:

Name Value Applies to Semantics
persistence Enumeration Type

Instance

Attribute

Persistence is the
specification of the
permanence of the state of an
instance. Persistence is an
enumeration specified as
{transitory, persistent}. A
transitory instance is one
whose state is destroyed

UML v 1.0, Semantics 33

when the instance is
destroyed; a persistent
instance is one whose state is
not destroyed when the
instance is destroyed. The
default value of persistence is
transitory. Specifying this
tagged value on a Type
instance constrains the
persistence semantics of its
instances: all of the instances
of a transitory type are
transitory, and all of the
instances of a persistent type
are either transitory or
persistent. Specifying this
tagged value on an Instance
instance states the actual
persistence semantics of that
instance. Specifying this
tagged value on an Attribute
instance specializes the
persistence property of its
owning Type instance.

responsibility String Type A responsibility is a contract
by or an obligation of the
Type instance to which it is
attached.

There are three synonyms that apply to the metamodel classes described in this diagram:

Synonym Definition
object An object is an instance of a type (including all subtypes of type).

scenario A scenario is a defined use case instance.

supplier A supplier is a type or a class that refines an interface.

34 UML v 1.0, Semantics

6. STRUCTURAL ELEMENTS: RELATIONSHIPS

There are five fundamental kinds of relationships in the UML. One of these - dependency - is a common mechanism that
applies to all elements (and is described in the package Core Concepts). Two of these - generalization and association -
apply to all types. The remaining two relationship - transition and link - apply to certain behavioral elements (and are
described in the package Behavioral Elements).

Package
(from Core Concepts)

supertype

0..*

GeneralizableElement

+ isRoot : Boolean
+ isLeaf : Boolean
+ isAbstract : Boolean

0..* 0..*

generalization

subtype

0..*

{ordered}

{ordered}

ModelElement
(from Core Concepts)

Relationship
(from Core Concepts)

Stereotype
(from Core Concepts)

0..1

0..1

Generalization

0..*
Attribute

0..1
1 0..*

0..1

Type

0..1

0..1

powertype

0..*

2 .. *

AssociationRole

+ multiplicity : Multiplicity
+ isNavigable : Boolean
+ isAggregate : Boolean
+ isChangeable : Boolean
+ isOrdered : Boolean

0..*0..1

qualifier
1 0..*

participates

0..1

0..*

role

1

Association

2 .. *

1

association roles

6.1 DESCRIPTION
This diagram describes the structural relationships of the UML, and includes the
following metamodel classes:

Association An association is a bidirectional semantic connection
among instances.

AssociationRole An association role is the face that a type plays in an
association.

Attribute An attribute is a structural feature of a type. An attribute is
semantically equivalent to a composite aggregation with
navigation restricted to navigation from the type to the
attribute.

GeneralizableElementA generalizable element is one that may participate in a
generalization relationship.

UML v 1.0, Semantics 35

Generalization Generalization is a unidirectional inheritance relationship,
uniting two more more generalizable elements in a
supertype/subtype hierarchy, wherein an instance of the
subtype is substitutable for an instance of the supertype.

ModelElement Described in section 2

Package Described in section 2

Relationship Described in section 3

Stereotype Described in section 2

Type Described in section 5

This diagram also introduces the following relationships:

association roles Association roles is a composite aggregation of an
association to its roles. An association has two or more
association roles.

generalization Generalization is unidirectional inheritance relationship,
uniting two more more generalizable elements in a
supertype/subtype hierarchy, wherein an instance of the
subtype is substitutable for an instance of the supertype. A
supertype generalizes a subtype.

generalization Association is a subtype of relationship.

Association role is a subtype of model element.

Generalization is a subtype of relationship.

Package is a subtype of generalizable element.

Stereotype is a subtype of generalizable element.

Type is a subtype of generalizable element.

participates Participate is an association indicating the role an instance
plays in its association with other instances. A type
participates in a role.

powertype Powetype is a composite aggregation of a generalization to
one type (the powertype). A type is the powertype of a
generalization.

qualifier Qualifier is a composite aggregation of a role to its
attributes (the qualifiers). An attribute qualifies a role.

role Role is a shared aggregation of a role to zero or one types.
A type is the role of a role.

36 UML v 1.0, Semantics

6.2 BASIC SEMANTICS
Relationship is an abstract subtype of ModelElement. The responsibility of Relationship
is to establish a semantic connection among Element instances. Unless otherwise
specified by a subtype, the Name instances associated with all Relationship instances
connecting the same Element instance must be unique. Similarly, all well-formed
Relationship instances must connect the same or at least two different Element instances:
there may be no dangling Relationship instances. Furthermore, destroying the next to the
last Element instance connected to a Relationship instance destroys the Relationship
instance, since otherwise there would be a dangling Relationship instance.

Generalization is a subtype of Relationship. The responsibility of Generalization is to
specify an ordered unidirectional inheritance relationship, wherein an instance of the
subtype is substitutable for an instance of the supertype. The Name instance associated
with a Generalization instance is called the discriminant of the relationship. For a given
supertype, there may be Generalization instances with the same discriminant Name
instance, meaning that these identically named relationships partition all of the subtypes
of the given supertype into a set named by this discriminant.

GeneralizableElement is an abstract class. The responsibility of GeneralizableElement is
to specify an Element instance that may participate in a generalization relationship. A
given GeneralizableElement instance may have zero or more supertypes and may be the
supertype for zero or more subtypes. A given Element instance may not be a supertype or
a subtype of itself. The isRoot attribute of GeneralizableElement specifies if the instance
is allowed to have any supertypes; the default value of isRoot is False, meaning that the
instance is not the root and hence may have supertypes. The isLeaf attribute of
GeneralizableElement specifies if the instance is allowed to have any subtypes; the
default value of isLeaf is False, meaning that the instance is not a leaf and hence may
have subtypes. The isAbstract attribute of GeneralizableElement specifies if the instance
is allowed to have any instances; the default value of isAbstract is False, meaning that the
instance is not abstract and hence may have instances.

Stereotype is a subtype of GeneralizableElement. The responsibilities of Stereotype are to
provide a classification and to optionally establish additional semantics and visual cues
for the Element instance to which it is attached.

Package is a subtype of GeneralizableElement. The responsibility of Package is to
provide a general purpose grouping mechanism.

Type is a subtype of GeneralizableElement. The responsibility of Type is to specify a
domain together with behavior applicable to that domain.

Powertype is a composite aggregation of a Generalization instance to a Type instance.
The responsibility of Powertype is to specify the Type instance that is the powertype of
the Generalization instance. Every Generalization instance may have zero or one Type
instance as a powertype, and every Type instance may be the powertype of zero or one
Generalization instances.

UML v 1.0, Semantics 37

Association is a subtype of Relationship. The responsibility of Association is to specify a
bidirectional semantic connection among instances. The Name instance association with
the Association instance is the name of the association; for a given Type instance that
participates in multiple Association instances, the names of each of these Association
instances must be unique.

AssociationRole is a subtype of ModelElement. The responsibility of AssociationRole is
to specify the face that a type plays in an association. The Name instance associated with
AssociationRole is the name of the association role. Unless otherwise specified, the
attributes of an AssociationRole instance are orthogonal. The multiplicity attribute of
AssociationRole specifies the number of instances of a Type instance that participate in
the Association instance; the default value of multiplicity is 0 .. *. The isNavigable
attribute of AssociationRole specifies if the association is navigable to the participating
Type instance, where navigable means that given an instance of the Type instance is
directly reachable via the Association instance; the default value of isNavigable is True,
meaning that the participating Type instance is navigable. Any number of the
AssociationRole instances associated with an Association instance may have isNavigable
set False. The isAggregate attribute of AssociationRole specifies if the participating Type
instance is the whole in a whole/part association. For all the AssociationRole instances
associated with an Association instance, at most one AssociationRole instance may have
isAggregate set to True, designating the participating Type instance to the be whole of the
aggregation and all other participating Type instances to be the parts. When isAggregate
is set True for at least one AssociationRole instance that is part of a given Association
instance, the value of the multiplicity attribute has semantic implication for the life times
of the whole and the part. Specifically, if the multiplicity of the whole is no greater than
one, then the whole is said to own the parts, and destroying the whole destroys the parts.
If the multiplicity of the whole is greater than one, then the whole is said to share the
parts, and destroying the whole does not necessarily destroy the parts. The isChangeable
attribute of AssociationRole specifies the mutability of the relationship; the default value
of isChangeable is True, meaning that the semantics of the Association instance are
preserved even if the instance of the participating Type instance is replaced by a different
instance of a Type instance. The isOrdered attribute of AssociationRole applies if the
multiplicity of the AssociationRole instance is greater than one, and means that the
instances that participate in the Association instance are ordered.

Association roles is an ordered composite aggregation of an Association instance to a
collection of AssociationRole instances. The responsibility of association roles is to
connect a collection of AssociationRole instances to an Association instance. A given
Association instance may have two or more AssociationRole instances, and every
AssociationRole instance is a part of exactly one Association instance. The most common
Association instance has exactly two AssociationRole instances; Association instances
with more than two AssociationRole instances constitute n-ary associations.

An aggregation relationship specifies an Association instance with exactly one
AssociationRole instance whose isAggregate attribute is True. Setting this attribute only
specifies a whole/part relationship (with the participating Type instance associated with

38 UML v 1.0, Semantics

the AssociationRole instance whose isAggregate attribute is True designated as the
whole); it says nothing about navigability, ownership, or lifetimes. A composite
aggregation is a strong form of aggregation, with a multiplicity of no more than one
established for the whole, and isChangeable set to True for the whole. The implication of
a composite aggregation is that the whole owns its parts, and that the whole represents a
shift in levels of abstraction over the parts. An aggregation relationship that is a
multiplicity of greater than one established for the whole is called shared. By implication,
a composite aggregation forms a tree of parts, whereas a shared aggregation forms a
graph.

Participates is an association indicating the role that an instance of a Type instance plays
in an Association instance. The responsibility of participates is to specify the Type
instance that participates in a given AssociationRole instance that is part of an
Association instance. Every AssociationRole instance has exactly one participating Type
instance, and every Type instance may be a participant in zero or more AssociationRole
instances.

Role is a shared aggregation of an AssociationRole instance to a collection of Attribute
instances. The responsibility of role is to specify how the instances of Type instance are
partitioned at one end of an Association instance.

The Attribute instance is said to qualify the Association instance, meaning that across an
Association instance with an AssociationRole whose multiplicity attribute specifies
greater than one instance of a participating Type instance, the qualifier (or qualifiers) may
be used to designate a specific instance of the Type instance.

6.3 DERIVED SEMANTICS
The semantics of ModelElement and Package are described in section 2.

The semantics of Stereotype are described in section 3.

The semantics of Type and Attribute are described in section 7.

If isAbstract is True for a given Stereotype instance, this means that the Stereotype
instance many not be the classification of any Element instance.

A Package instance that is the subtype of another Package instance is substitutable for the
supertype, meaning that the interface of the subtype Package instance conforms to the
interface of the supertype Package instance. In this context, interface means the type of
the Package instance, consisting of all of the public Element instances owned by the
Package instance and conforms means that the interface of the subtype provides the same
structure and behavior of the supertype, although the subtype may provide additional
structure and behavior. If isAbstract is True for a given Package instance, this means that
the Package instance cannot not stand alone, but must be further refined by a concrete
subtype.

UML v 1.0, Semantics 39

GeneralizableElement is not a subtype of Element.

The properties of GeneralizableElement apply to its subtypes as well, and thus the
subtypes of Type may also participate in Generalization relationships. As described in
section 5, this encompasses Type, Class, ActiveClass, Signal, Component, and Node, all
of which may participate in Generalization relationships.

Association is the only subtype of Relationship that specifies a semantic connection
among instances; all other relationships (Dependency, Generalization, and Transition)
specify connections among types.

N-ary associations are permitted, although there is no manifest ModelElement instance
that corresponds to the ViewElement instance that projects the center of the n-ary
relationship.

Because Association is a subtype of Element, the stereotyped derived dependency applies,
and is typically used to denote association relationships that are not manifest but rather
are inherited from an Association instance specified for some supertype of a Type
instance that participates in the Association instance.

Association/Link, AssociationRole/LinkRole, and Attribute/Value each form an
essence/manifestation pair.

As described in section 5, UseCase is a subtype of Type, and therefore UseCase instances
may participate in Generalization and Association relationships. UseCase instances may
be the supertype or subtype of other UseCase instances but not of other subtypes of Type.
UseCase instances may participate in certain stereotyped Dependency relationships with
other UseCase instances as well as other kinds of Type instances, especially actors, which
are stereotyped Type instances. UseCase instances may not participate in Association
relationships with one another.

6.4 STANDARD ELEMENTS
There are six standard stereotypes that apply to the metamodel classes described in this
diagram:

Name Applies to Semantics
extends Generalization Extends is a stereotyped

Generalization whose source and
target must both be use cases or
types. representing that the behavior
of the source use case (or type)
extends the behavior of the target use
case (or type).

powertype Dependency Powertype is a stereotyped Dependency or
Type. A powertype Dependency is one whose

40 UML v 1.0, Semantics

Type source is a generalization and whose target is a
type, specifying that the target is the powertype
of the source. A powertype Type is one that
represents a type that is only a powertype of a
generalization.

role Dependency Role is a stereotyped Dependency, whose
source is a type and whose target is an
association role. A role dependency specifies
that the role of the association role is the source
target. This role type must be one of the roles
of the type that participates in the association
role.

subclass Generalization Subclass is a stereotyped Generalization,
specifying that the subtype is a subclass (but
not a subtype) of the supertype. In this context,
subclassing means that the subtype inherits the
structure and behavior of the supertype, but the
subtype is not a type of the supertype.

subtype Generalization Subtype is a stereotyped Generalization,
specifying that the subtype is a subtype of the
supertype. In this context, subtyping means that
the subtype inherits the structure and behavior
of the supertype, and that the subtype is a type
of the supertype.

uses Dependency Uses is a stereotyped Dependency
whose source and target must both be
use cases, representing that the
source use cases also includes the
behavior of the target use case.

There are seven standard constraints that apply to the metamodel classes described in this
diagram:

Name Applies to Semantics
complete Generalization Complete is a constraint applied to a collection

of generalization relationships, specifying that
all subtypes have been specified (although so
may be elided) and that no additional subtypes
are permitted.

disjoint Generalization Disjoint is a constraint applied to a collection
of generalization relationships, specifying that
instances may have no more than one of the

UML v 1.0, Semantics 41

given subtypes as a type of the instance. This is
the default semantics of generalization,
meaning that unless otherwise specified as
overlapping, all instances may have only one of
the subtypes as a type of the instance.

implicit Association Implicit is a constraint applied to an
association, specifying that the association is
not manifest, but rather is only conceptual.

incomplete Generalization Incomplete is a constraint applied to a
collection of generalization relationships,
specifying that not all subtypes have been
specified (even if some are elided or are not
part of the model) and that additional subtypes
are permitted. This is the default semantics of
generalization, meaning that unless otherwise
specified as complete, all supertypes may have
additional subtypes.

or Association Or is a constraint applied to a collection of
instances, specifying that over that collection,
only one is manifest for each associated
instance. Or is an exclusive (not an inclusive)
or constraint.

ordered AssociationRole Ordered is a constraint applied to an
association role, specifying that the order of the
participants is semantically important.

overlapping Generalization Overlapping is a constraint applied to a
collection of generalization relationships,
specifying that instances may have more than
one of the given subtypes as a type of the
instance.

There are four synonyms that apply to the metamodel classes described in this diagram:

Synonym Definition
composite A composite aggregation is a strong form of aggregation, with a

multiplicity of no more than one established for the whole, and
isChangeable set to False for the whole.

discriminant The name of a generalization.

inheritance Inheritance is a generalization relationship.

shared A shared aggregation is a weak form of aggregation, with a
multiplicity of greater than one established for the whole.

42 UML v 1.0, Semantics

7. STRUCTURAL ELEMENTS: TYPES

Members

+ isTypeScope : Boolean
+ visibility : Visibility
+ direction : {provide, require}

ModelElement
(from Core Concepts)

A type is the specification of a domain together with behavior applicable to that domain.Classes provide the concrete
realization of types

Nested

+ visibility : Visibility

Attribute

+ type : TypeExpression
+ initialValue : Uninterpreted

ModelElement
(from Core Concepts)

Signals

+ direction : {receive, send}

0..*

Parameter

+ type : TypeExpression
+ defaultValue : Uninterpreted

1

Operation

+ isPolymorphic : Boolean
+ isQuery : Boolean
+ isAbstract : Boolean 0..*1

formal parameter

FormalParameter

+ kind : {in, inout, out, return}

{ordered}

0..*

Member

1

0..*

0..1

0..*

Value

0..1

0..*
Parameter

0..1

0..*

Signal

0..*
0..1 0..*

Behavior
(from Behavioral Elements)

Name
(from Core Concepts)

Type

+ isTemplate : Boolean

0..*

1

members

0..*

0..1
nested

0..* 0..1

template argument

0..* 0..1

template parameter

0..*

0..*

signals

0..1 0..*

behaviors

0..1

0..*

0..1

0..*

extension points

7.1 DESCRIPTION
This diagram describes the semantics of types in the UML, and includes the following
metamodel classes:

Attribute Described in section 6

FormalParameter Formal parameter is a composite aggregation of a signature
to a collection o parameters. A parameter is a formal
parameter of a signature/operation. Kind specifies the
direction of the parameters.

Member A member is a part of a type denoting either an attribute or
an operation.

UML v 1.0, Semantics 43

Members Members is a composite aggregation of a type to a
collection of members. This collection of members are the
members of the type. Type scope is the scope of the
member relative to the type or the instance. Visibility is
how the associated member is seen from the outside of its
enclosing type. Direction is an indication of the member
being provided or required by the member to which it is
attached.

ModelElement Described in section 2

Name Described in section 2.

Nested Nested is a composite aggregation of a type to a collection
of types. A type may be nested in another type. Visibility is
how the associated type is seen from outside its enclosing
type.

Operation An operation is the public face that a unit of work presents
to the world.

Parameter A parameter is an unbound expression.

Signal Described in section 5

Signals Signals is shared aggregation of a type to a collection of
signals. This collection of signals are the signals received or
sent by the type. Direction is an indication of the signal
received or sent by the type to which it is attached.

Type Described in section 5

Value Described in section 5

This diagram also introduces the following relationships:

behaviors Behaviors is a composite aggregation of a type to a
collection of behaviors. The behaviors are the behaviors of
the type.

extension points Extension points is a composite aggregation of a type to a
collection of names. The names are the extension points of
the type.

formal parameter Formal parameter is a composite aggregation of a signature
to a collection o parameters. A parameter is a formal
parameter of a signature/operation.

generalization Attribute is a subtype of Member.

Member is a subtype of ModelElement.

Operation is a subtype of Member.

44 UML v 1.0, Semantics

Parameter is a subtype of ModelElement.

Value is a subtype of ModelElement.

members Members is a composite aggregation of a type to a
collection of members. These members are the members of
the type.

nested Nested is a composite aggregation of a type to a collection
of types. A type may be nested in another type.

signals Signals is shared aggregation of a type to a collection of
signals. This collection of signals are the signals received
or sent by the type.

template argument Template argument is a composite aggregation of a type to
a collection of values. A value is a template argument to a
parameter of a template type.

template parameter Template parameter is a composite aggregation of a type to
a collection of parameters. A parameter is a template
parameter of a template type.

7.2 BASIC SEMANTICS
The responsibility of Type is to specify a domain together with behavior applicable to that
domain. The isTemplate attribute of Type is a Boolean specifying if the Type instance is a
template or not. A template Type instance is a kind of type that is not manifest (and
therefore may not have instances) but rather must first be bound. A template Type
instance may have parameters but may not have any arguments, and a non-template Type
instance may not have any parameters and may or may not have any arguments (it may
have arguments only if the non-template Type instance represents an instantiation of a
template Type instance) The default value of isTemplate is False.

Nested is a composite aggregation of a Type instance to a collection of Type instances.
The responsibility of Nested is to specify nested Type instance declarations. The visibility
attribute of Nested specifies how the associated nested Type instance may be seen from
outside its enclosing Type instance. The default value of visibility is public. Every nested
Type instance is owned by exactly one Type instance, and every Type instance may have
zero or more nested Type instances. Nesting applies recursively, meaning that nested
Type instances may themselves have nested Type instances. Since each Type instance
defines a name space, the name of each nested Type instance must be unique within the
same level of nesting.

Behaviors is a composite aggregation of a Type instance to a collection of Behavior
instances. The responsibility of behaviors is to specify the behavior of the Type instance.

Parameter is a subtype of ModelElement and is an unbound expression whose
responsibility is to specify the name, type, and default value of a parameter. The name of

UML v 1.0, Semantics 45

a Parameter instance is a Name representing the name of the parameter; its value may not
be a null name. The type attribute of Parameter is a TypeExpression instance and is used
to specify the type of the parameter. The defaultValue attribute of Parameter is
Uninterpreted and applies only when there is no match to the given parameters. The type
of the defaultValue must be compatible with the type of the Parameter instance.

Template parameter is a composite association from a Type instance to a collection of
Parameter instances. Only Type instances whose isTemplate attribute is True may have
template parameters. Every Parameter instance in a template parameter is a part of zero or
one Type instances, and every Type instance may have zero or more Parameter instances.
The Name instances of the Parameter instances become names that are visible to the
template Type instance and can be used in the scope of the template in a manner than
conforms to the type of the Parameter instance.

Value is a subtype of ModelElement and is a bound value of an expression. The
responsibility of Value is to reify a value.

Template argument is a composite aggregation of a Type instance to a collection of Value
instances. Only a non-template Type instance may have template arguments, and then
only when the Type instance represents an instantiation of a template Type instance. The
responsibility of template argument is to provide a collection of Value instances that bind
the template parameters of the unbound template Type instance which the non-template
Type instance is instantiating. The template argument Value instances of the non-
template Type instance must match the template parameter Parameter instances of the
template Type instance in order and must conform in type (but not necessarily in name).
Furthermore, the template argument Value instances of the non-template Type instance
must involve only those Type instance that are visible to the non-template Type instance.

Signal is named event. The responsibility of Signal is to name a potential event
representing a significant occurrence in time/space.

Signals is a shared aggregation of a Type instance to a collection of Signal instances. The
responsibility of Signals is to specify the Signal instances to which the given Type
instance is obligated to respond to or that it sends. The direction attribute of Signals is an
enumeration, specifying the direction of the associated Signal instance. The default
direction of a Signal instance is receive. A Signal instance that is received by the Type
instance is one to which the Type instance is obligated to handle; a Signal instance that is
sent by the Type instance is one which the Type instance may send to its clients. A given
Type instance may receive or send to zero or more Signal instances, and a given Signal
instance may be received or sent by zero or more Type instances.

The UML does not specify the underlying mechanism whereby a Signal instance is
broadcast to a Type instance nor how a Type instance receives or sends a Signal instance.

Member is an abstract subclass of ModelElement. The responsibility of Member is to
represent an Attribute instance or an Operation instance.

46 UML v 1.0, Semantics

Members is a composite aggregation of a Type instance of a collection of Member
instances. The responsibility of Members is to specify the members of a type. A given
Type instance may have zero or more Member instances, and every Member instance
belongs to exactly one Type instance. The isTypeScope attribute of Members is a
Boolean specifying the scope of the associated Member instance. The default value of
isTypeScope is False, meaning that the Member instance is instanced scoped. An instance
scoped Member instance is one that is unique to the instance of the Type instance, and a
type scoped Member instance is one that is shared by all instance of the Type instance.
The visibility attribute of Members is a Boolean specifying the visibility of the associated
Member relative to the enclosing Type instance. The default value of visibility is public.
The direction attribute of Members is an enumeration, specifying the direction of the
associated Member instance. The default direction of Members is provide, meaning that
the Member instance is one that is declared in the Type instance. A required Member
instance is one that the Type instance requires in order to preserve its semantics.
Specifying a required Member instance introduces the Member instance to the Type
instance, but does not constitute a declaration of the Member instance. Unlike template
parameters, the specification of required Member instances does not introduce a template
Member instance, but rather is a statement of the semantics of the Type instance’s
interface, in which the Member instances that it expects to use are specified.

Attribute is a subtype of Member. The responsibility of Attribute is to specify a structural
feature of a Type instance. The Name instance associated with an Attribute instance is the
name of the attribute; its value must not be the null name. The type attribute of an
Attribute instance specifies the type of the attribute, and the initialValue attribute of the
Attribute instance specifies its initial value if not otherwise specified or constructed. The
type of the initialValue must be compatible with the type of the Attribute instance.

Operation is a subtype of Member. The responsibility of Operation is to specify a
behavioral feature of a Type instance. The Name instance associated with an Operation
instance is the name of the operation; its value must not be the null name. The
isPolymorphic attribute is a Boolean and specifies whether or not the Operation instance
is polymorphic; a polymorphic Operation instance is one that a subtype may reintroduce
and provide an alternative Method instance, so than when the Operation instance is
called, the overridden behavior is carried out. The default value of isPolymorphic is True.
In an inheritance lattice, once isPolymorphic is set False, it cannot be set True for the
same Operation lower in the lattice. The isQuery attribute is a Boolean and specifies
whether or not the Operation instance is a behavior that preserves the state of the
instance. The default value of isQuery is False, which means that the semantics of the
Operation instance allow the state of the instance of the Type instance to be modified. A
value of True means that the semantics of the Operation must guarantee that the state of
the instance of the Type instance not be modified. The attribute isAbstract is a Boolean
and specifies if the Operation instance has a corresponding realization. The default value
of isAbstract is False, meaning that a corresponding realization can exist; a value of True
means that a corresponding realization does not and cannot exist. A Type instance that
has one or more provided operations for which isAbstract is True represents one that may
not directly have any corresponding instances in the real world, although in a Model

UML v 1.0, Semantics 47

instance, there may be Instance instances that correspond to an abstract Type instance,
representing a prototypical instance of one of its subtypes.

Extension point is a composite aggregation of a Type instance to a collection of Name
instances. Every Type instance may have zero or more extension points, and every Name
may be the extension point of no more than one Type instance. The Name instances
associated with a Type instance as extension points must have unique names.

Formal parameter is an ordered composite association from an Operation instance to a
collection of Parameter instances. Every Parameter instance in a formal parameter is a
part of zero or one Operation instances, and every Operation instance may have zero or
more Parameter instances. The Name instances of the Parameter instances become names
that are visible to the Operation instance as parameters and can be used in the scope of the
Operation in a manner than conforms to the type of the Parameter instance. The kind
attribute of FormalParameter is an enumeration, the responsibility of which is to specify
the kind of the formal parameter. In specifies a parameter whose properties can be
observed but not modified; out specifies a parameter whose properties cannot be observed
but can be modified; inout specifies a parameter whose properties can both be observed
as well as modified; return has the same semantics as out, but designates a parameter that
may be used in expressions involving the corresponding Operation instance. The default
value of kind is inout. A given Operation instance may have any number of Parameter
instances of any of these kinds, including return, although most commonly, an Operation
instance will have exactly zero or one return Parameter instances.

7.3 DERIVED SEMANTICS
The semantics of Name and ModelElement are described in section 2.

The semantics of Behavior are described in sections 9 and 10.

FormalParameter, Members, Nested, and Signals are not subtypes of ModelElement.

As described in section 5, UseCase is a subtype of Type. Therefore, all of the properties
of Type instances described in this section are applicable to UseCase instances. One
exception is that UseCase instance may not be nested.

As described in section 5.4, responsibility is a predefined tagged value that applies to
Type and that specifies a contract or obligation of the Type instance to which it is
attached. During the lifetime of this Type instance, such responsibilities are typically
refined and ultimately realized by the members of the Type instance. It is possible to
specify an explicit trace from a responsibility to the Member instances that realize it, by
introducing a trace Dependency instance whose target is the Responsibility instance and
whose sources are the Member instances of the Type instance to which the responsibility
is attached.

48 UML v 1.0, Semantics

As described in section 5, a Type instance specifies an interface, which is realized by a
Class instance. The separation of Type and Class constitutes the specification/realization
dichotomy of the UML. This dichotomy is described in section 5.

As described in section 5.4, there may be refinement Dependency instances whose source
is a Type or Class instance and whose target is a Type instance. The target of a refinement
specifies an interface, and this interface specifies a role of the source. Collectively, the
target Type instances of all the refinement Dependency instances whose source is a given
Type instance are called the roles of the Type instance. This concept of roles interacts
with the semantics of association roles as described in section 6. For a given Type
instance that participates in AssociationRole instances in multiple Association instances,
each such AssociationRole instance specifies a role for that Type instance in the form of
another (or the same) Type instance that specifies an interface. The complete roles of a
Type instance must be a superset of the association roles in which that Type instance
participates.

These semantics yield a separation of the specification/realization hierarchy. Specifically,
a given Class instance may the refinement of multiple Type instances, representing the
roles of the Class instance, and a given Type instance may be refined by multiple Class
instances. These roles are the types of the Class instance. If a given Class instance is not
the refinement of any Type instance, the type and the class of the Class instance are the
same.

The semantics of refinement also interact with the semantics of instances. As described in
section 5, and Instance instance may have an association to a collection Type instances,
representing the immediate role of that Instance instance. The roles of an Instance
instance must conform to all the potential roles of the corresponding Type instance.

As described in section 6.2, Type is a GeneralizableElement and hence Type instances
may be specified as abstract.

As described in section 4.2, qualified names are formed from the catenation of package
names and qualifications. Nested Type instances are owned by other Type instances, and
so introduce the need for a second kind of qualification, as specified by the following
production rule:

qualification ::= type_name {“::” qualification}

As described in section 6, Type instances may participate in Generalization and
Association relationships (and as described in section 3, Dependency relationships). The
same is true of template Type instances.

The Parameter/Value binding of an instantiation Type instance to a template Type
instance represents a kind of essence/manifestation pair. As for the binding of actual
parameters to formal parameters of an operation, the binding of a Value instance to a

UML v 1.0, Semantics 49

Parameter instance introduces an Association relationship between the instantiation Type
instance and the type associated with the Value instance, in accordance with the manner
in which the corresponding Parameter instance in the template Type instance, once all the
bindings have been resolved.

The semantics of Type and Attribute persistence are described in section 5.4.

As described in section 5, Signal is a subtype of Class. Thus, as described in section 6,
Signal instances are GeneralizableElement instances and may also participate in
Association relationships. This means it is possible to model hierarchies of Signal
instances. If a Signal instance S is specified as a signal received by a given Type instance,
this means that the Type is obligated to respond to instances of S as well as instances of
subtypes of S.

Because Signal is a subtype of Class, a Signal instance may have Member instances
including Attribute instances (but rarely will it have Operation instances). These Attribute
instances are essentially the formal parameters of the Signal instance, and as described in
section 10, these formal parameters may be matched to actual parameters in the context of
an Action instance.

The semantics of Visibility are described in section 2.

The direction attribute of Signals and Members permits the specification of roles
provided by a Type instance as well as roles wanted by a Type instance. A role provided
by a Type instance constitutes an obligation of the Type instance to respond to the Signal
instances specified as received, and a declaration of the Member instances specified as
provided. Similarly, a Type instance may specify a role wanted by the instance. In this
context, a wanted role is subset of the full set of the accumulation of all of the association
roles opposite the role the given Type instance participates in. Member instances. This
permits an evaluation of closure among the Type instance of a model. Specifically, if a
given Type instance sends a given Signal instance, some other Type instance can be
checked as receiving that same Signal instance. Similarly, a given Type instance may
provide certain Member instances, which in turn are required by some other Type
instance. The UML does not specify any strong semantics for the binding of providing
and wanting roles, other than to permit their specification and to encourage their
matching. The rationale for these semantics are that strong matching semantics are
possible only in complete, self-consistent, and unchanging models, where as the vast
majority of models are by their very nature incomplete, self-inconsistent, and constantly
changing.

Since a Type instance defines a name space, the names of all of the Attribute instances
declared by a Type instance must be unique. Similarly, the signatures of all of the
Operation instances declared by a Type instance must be unique; since for Operations the
name space rules of a Type instance apply to signatures and not names, this means that
there may be multiple Operation instances declared by a Type instance each having the
same Name instance, but must be distinguished by their parameters names and types.

50 UML v 1.0, Semantics

Type/Instance, Parameter/Value, Attribute/Instance, Signal/Message, Operation/Message
each form an essence/manifestation pair.

Member is a subtype of ModelElement, and therefore Member instances may have
Stereotype, TaggedValue, Note, and Constraint instances attached (as well as participate
in Dependency relationships). Two of the more common uses of these properties with
Member instances are to provide a categorization of different kinds of members (via a
Stereotype instance attached to each Member instance) and to connect Operation
instances to their Method instances (via a refinement Dependency) and in turn Method
instance to their code bodies (via a Dependency from the Method instance to a Note
containing a view into a file Component instance). The semantics of Method and
Component are described in section 8.

An attribute is semantically equivalent to a composite aggregation with navigation
restricted to navigation from the type to the attribute.

A derived attribute is one that is not manifest but rather is derived from the semantics of
other Member instances. A derived attribute is one that is the source of a derived
Dependency as described in section 2.4.

As described in section 8, just as Type/Class form an essence/manifestation dichotomy,
so do Operation/Method: an Operation instance represents the interface of a unit of work,
and a Method instance represents its realization. As described in section 5.4, the
relationship between a Method instance and an Operation instance is that of refinement,
namely, the Method instance is a refinement of the Operation instance. These semantics
yield a separation of the specification/realization hierarchy. A given Method instance may
be the refinement of exactly one Operation instance, and one Operation instance may be
refined by many different Method instances. If a given Method instance is not the
refinement of any Operation instance, the interface and the realization of the unit of work
are collapsed into one construct, namely, the Method instance.

As described in section 6, Type instances may participate in Generalization relationships.
Type instances that are subtypes of another Type instance inherit all of the properties of
their supertypes, including but not limited to the Stereotype, Property, Note, Constraint,
Signal, and Member (including Attribute and Operation) instances, as well as
corresponding relationships and representations (via Collaboration instances). Subtypes
may as usual add new structural properties as well as override behavioral properties (such
as for inherited Operation instances and inherited StateMachine instances, the latter of
which arise because a Type instance may be represented by a Collaboration instance,
which in turn has Behavior instances, which include StateMachine instances). The
semantics of inheritance have particular significance for Operation and StateMachine
instances. Specifically, an Operation of a supertype Type instance may be overridden by a
corresponding Operation instance in a subtype Type instance, if and only if the supertype
Operation instance is marked as polymorphic (its isPolymorphic attribute must be True).
The Operation instance of the subtype must conform to the signature of the Operation
instance of the supertype, but may override the behavior of the supertype’s Operation

UML v 1.0, Semantics 51

instance. There is not explicit relationship between the Operation instance of a supertype
Type instance and its corresponding Operation instances in the subtypes of the Type
instance. Rather, these operations are matched by signature: Operation instances with the
same signature are considered to match.

The semantics of invoking an instance of a Signal instance or invoking an instance of an
Operation instance are described in sections 10 and 11. Operation instances that are
marked as polymorphic (specified by setting their isPolymorphic attribute to True) are
dispatched via a dynamic lookup.

As described above, a Type instance may have associated Behavior instances; the purpose
of these Behavior instances is to specify the behavior of the Type instance as viewed from
the outside. However, as described in section 9, both Type and Operation instances may
also be represented by a Collaboration instance. For Type instances, this allows the
vocabulary of the abstraction to be expressed, thus specifying the behavior of the Type
instance as viewed from the inside. Further, as described in sections 10 and 11
respectively, StateMachine and Interaction are both subtypes of Behavior, and hence
either or both can be used to describe these semantics. Specifically, instances of
StateMachine may be used to specify the dynamic semantics of a Type instance, and
instances of Interaction may be use to reflect the dynamic semantics through a series of
scenarios that offer prototypical examples of the Type instance’s behavior.

In the case of Operation instances, the semantics of the operation may be expressed in a
Collaboration which includes both the participants of behavior as well as the dynamic
semantics of their collaboration, either specified by StateMachine instances or reflected
by Interaction instances.

These semantics have particular importance for UseCase instances. As described in
section 5, a UseCase instance specifies a set of scenarios, where a scenario is a sequence
of actions. Thus, a UseCase instance (not to be confused with the Instance instance
corresponding to the UseCase instance) is represented by a Collaboration instance that in
turn has a collection of Behavior instances that specify all of the potential scenarios of the
UseCase instance. As described in section 5, its corresponding Instance instance is a
scenario, which is a single flow of actions matching this potential flow of actions.

The rules of matching formal parameters to actual parameters is described in section 10.
The association of an Operation instance to a Parameter instance introduces an implicit
association between the Operation instance and the Type instances referenced in the type
of the Parameter instance. Unless otherwise specified, this association has a multiplicity
of 0..1 for both roles.

It is possible to specify an explicit send Dependency from an Operation instance to a
Signal instance, representing the signals that may be sent during an invocation of the
operation. The source of this send Dependency is an Operation instance, and the target is
a Signal instance, both of which must be members and signals, respectively, of the same
Type instance.

52 UML v 1.0, Semantics

The semantics of extension points interact with the semantics of the extends stereotype as
described in section 6. Specifically, the extension points of a Type instance or a UseCase
instance (the only two Element instances for which extends applies) define a point that
may be extended by another Type or UseCase instance, where in this context extends
means that that behavior of an instance may be interrupted, only to be picked up by the
Type or UseCase that extends that behavior. Thus, an extension point is nothing more
than a label in a sequence of operations associated with a Type or UseCase instance that
names a place that may be extended by another Type or UseCase instance.

7.4 STANDARD ELEMENTS
There are five standard stereotypes that apply to the metamodel classes described in this
diagram:

Name Applies to Semantics
bind Dependency Bind is a stereotyped Dependency whose

source is an instantiated type or collaboration
and whose target is a template type or
collaboration. The mapping attribute is used to
match properties of the source to the target. A
bind dependency specifies that the source is a
binding of the target, wherein the unbound
template parameters of the target are bound by
name to the template arguments of the source.

call Dependency Call is a stereotyped Dependency whose source
is an operation and whose target is an
operation. A call dependency specifies that the
source invokes the target operation. A call
dependency may connect an operation to any
operation that is within scope, including but
not limited to required operations, other
operations of the type, and other operations
associated with different types but that are still
visible.

metaclass Dependency

Type

Metaclass is a stereotyped Dependency and a
stereotyped Type. A metaclass Dependency is
one whose source is a Type and whose target is
a metaclass, specifying that the target is the
metaclass of the source. A metaclass Type is
one that represents the type of a type; by
implication, the instance of a metaclass is a
type

send Dependency Send is a stereotyped Dependency, whose
source is an operation and whose target is a

UML v 1.0, Semantics 53

signal. A send dependency specifies that the
source sends the target signal. A send
dependency may connect an operation to any
signal that is within scope.

utility Type Utility is a stereotyped Type, representing a
type that has no instances, but rather is a named
collection of non-member attributes and
operations, each of which are type scoped.

There are six standard tagged values that apply to the metamodel classes described in this
diagram:

Name Value Applies to Semantics
invariant Uninterpreted Type An invariant is a predicate

that specifies properties that
must be preserved over the
lifetime of any instance of
the type.

postcondition Uninterpreted Operation A postcondition is a
predicate that specifies that
must be held to be true after
the completion of the
operation.

precondition Uninterpreted Operation A precondition is a predicate
that specifies properties that
must be held to be true
before the operation is
invoked.

semantics Uninterpreted Type

Operation

Semantics is the
specification of the meaning
of a type or an operation.

space semantics Uninterpreted Type

Operation

Space semantics is the
specification of the meaning
of the space complexity of
the associated type or
operation.

time semantics Uninterpreted Type

Operation

Time semantics is the
specification of the time
complexity of the associated
type or operation.

54 UML v 1.0, Semantics

There are two synonyms that apply to the metamodel classes described in this diagram:

Synonym Definition
client A client is a type that uses an interface.

signature A signature is the catentation of an operation’s name with the
names and types of its parameters. The signature of an operation
is essentially its behaviorless interface.

UML v 1.0, Semantics 55

8. STRUCTURAL ELEMENTS: CLASSES

A class is the realization of a type. The UML provides simple classes (Class) together with three specialized classes.
One of these specialized classes is behavioral - ActiveClass reifies the concept of thread - and two of these specialized
classes are physical - Component is a physical packaging of model elements, and Node is physical part upon which
components are deployed.

ActiveClass

Operation

+ concurrency : {sequential, guarded, synchronous}

0..* 0..*
Node

0..*

ModelElement
(from Core Concepts)

0..*

Component
0..* 0..*

deploys

0..*

0..*

implements

0..*

Method

+ body : Uninterpreted10..1 0..1
Class

0..*1

/members
Association

0..1 0..1

association class

8.1 DESCRIPTION
This diagram describes the semantics of classes in the UML, and includes the following
metamodel classes:

ActiveClass Described in section 5

Class Described in section 5

Component Described in section 5

Method A method is an elementary quanta of work, providing the
realization of an operation.

ModelElement Described in section 2

Node Described in section 5

Operation Described in section 7

56 UML v 1.0, Semantics

Relationship Described in section 3

This diagram also introduces the following relationships:

association class Association class is an association between an association
and a class. The class reifies the association and thus the
class is the association class of the association.

deploys Deploys is a shared aggregation of a node to a collection of
components. A node deploys components.

generalization ActiveClass is a subtype of Class.

Component is a subtype of Class.

Method is a subtype of Operation.

Node is a subtype of Class.

implements Implements is a shared aggregation of a component to a
collection of model elements. A componet implements
model elements.

members Members is a composite aggregation of a type to a
collection of members. These members are the members of
the type.

8.2 BASIC SEMANTICS
The responsibility of Class is to provide the realization of a Type. This is the essence of
the specification/realization dichotomy in the UML.

Method is a subtype of Operation. The responsibility of Method is to provide the
realization of an Operation instance. The body attribute of a Method instance is
Uninterpreted, specifying the implementation of the Method instance, typically in a
programming language outside the scope of the UML.

The composite aggregation from Class to Method is not manifest, but rather is derived
from the members relationship that is defined for Type and Operation. Just as a Type
instance may have associated with it a collection of Operation instances, so to may a
Class instance have associated with it a collection of Method instances. It is the case that
Type instances may only have Operation instances (and not Method instances) as
members. Similarly, it is the case that Class instances may only have Method instances
(and not Operation instances) as members.

The responsibility of Relationship is to specify a semantic connection among elements.

Association class is an association between an Association instance and a Class instance.
The responsibility of association class is to reify an association. The Class instance reifies

UML v 1.0, Semantics 57

the association and thus the Class instance is the Association instance class of the
relationship. Every Association instance may be associated with zero or one Class
instances, and every Class instance may be associated with zero or one Association
instances. The Name instance associated with the Relationship instance and the Class
instance must match.

Component is a subtype of Class. The responsibility of Component is to specify a
reusable part that provides the physical packaging of a collection of ModelElements
instances. The semantics of Component represent a shift in levels of abstraction: whereas
every ModelElement other than Component (and Node) represents a logical abstraction,
Component represents a physical abstraction, meaning an abstraction of a physical
implementation of other ModelElement instances.

Implements is a shared aggregation of a Component instance to a collection of
ModelElement instances. A Component instance may not implement other Component or
Node instances. A Component instance may implement zero or more ModelElement
instances, and every ModelElement instance may be implemented by zero or more
Component instances.

Node is a subtype of Class. The responsibility of Node is to specify a physical part upon
which Component instances may be deployed. In this context, deployed means the
allocation of a Component instance to a device upon which the Component instance
exists and may act or be acted upon. The semantics of Node represent a shift in levels of
abstraction: whereas every ModelElement other than Node (and Component) represents a
logical abstraction, Node represents a physical abstraction, meaning an abstraction of the
physical distribution of Component instances.

Deploys is a shared aggregation of a Node instance to a collection of Component
instances. A Node instance may deploy zero or more Component instances, and every
Component instance may be deployed on zero or more Node instances.

The implementation of a ModelElement instance on one or more Component instances
and the deployment of a Component instance on one or more Node instances represents
the location of that ModelElement or Component. Semantically, the owning Component
and Node instance define the location of ModelElement instances and Component
instances, respectively.

The responsibility of Operation is to specify a behavioral feature of a Type instance. The
concurrency attribute of an Operation instance is an enumeration that specifies the
concurrency semantics of the behavior. The default value of concurrency is sequential,
meaning that the semantics of the Operation instance are guaranteed only in the presence
of a single flow of control. Guarded and Synchronous both guarantee the semantics of the
Operation instance in the presence of multiple threads of control, but with different
semantics for synchronizing stimuli from these threads. Guarded means that the enclosing
Type instance includes a single guard for each instance of the Type instance (and in the
case of Operation instances that are type scoped, one other guard for the Type instance

58 UML v 1.0, Semantics

itself) such that all guarded stimuli invoked to the instance of the Type instance are
sequentialized. Synchronous means that each individual stimuli is sequentialized.

It is possible to have Operation instances with different concurrency semantics as
Member instances of the same Type instance. Furthermore, these concurrency semantics
apply to all of the subtypes of Type.

ActiveClass is a subtype of Type. The responsibility of ActiveClass is to specify an
independent flow of control. Instances of ActiveClass instances are instances just as any
other subtype of Type, with the additional semantics that each ActiveClass instance
represents the root of an independent and thus concurrent flow of control. The scope of
this flow of control is the same as for any Type instance: all instances of ActiveClass
instance at the same scope represent peer flows of control, and each such instance may be
a whole whose parts are themselves independent flows of control. For composite
instances, these flows represent children of the parent ActiveClass instance; for shared
instances, these flow represent peers of all flows of control in the same scope as the
owner of the shared instance.

8.3 DERIVED SEMANTICS
The semantics of ModelElement are described in section 2.

The semantics of Relationship are described in section 6.

The semantics of Type and Operation are described in section 7.

Class is a subtype of Type, and therefore instances of Class have the same properties as
instances of Type, the fundamental difference being that Type instances specify
interfaces, whereas Class instances specify the realization of these interfaces. This is the
essence of the specification/realization dichotomy in the UML. An implication of this
dichotomy is that a Type instance may only have Operation instances as members,
whereas Class instances may only have Method instances as members (even though
Method is a subtype of Operation and hence Method instances are semantically
substitutable). Both Type and Class instances may have Attribute instances as members.

Dynamically, a Class instance may receive Signal instances or Operation instances, but
not both.

As described in section 5.4, the relationship between Class instances and the Type
instances that it realizes may be explicitly modeled as a refinement Dependency.
Furthermore, as described in section 7, if a given Class instance is not the refinement of
any Type instance, the type and the class of the Class instance are the same.

The semantics of refinement apply to all of the subtypes of Class. By implication,
ActiveClass, Component, and Node instances may be the refinement of Type instances,
meaning that these Type instances specify the interface of the abstraction, and the

UML v 1.0, Semantics 59

corresponding ActiveClass, Component, and Node instances provide their realization
(representing a flow of control, a physical part for packaging, and a physical part for
deployment, respectively).

The semantics of refinement apply to Method instances as well: the relationship between
a Method instance and the Operation instances it realizes may be explicitly modeled as a
refinement Dependency. If a given Method instance is not the refinement of any
Operation instance, the operation and the method of the Method instance are the same.

The implementation of a Method instance is typically specified in one of two ways:
explicitly, by providing a value for its body attribute, typically in a programming
language outside the scope of the UML, or implicitly, derived from the Behavior instance
associated with the Method instance through its representation by a corresponding
Collaboration instance.

As described in section 9, both Type and Operation instances may be represented by a
Collaboration instance. Since Class and Method are both subtypes of Type and Operation,
respectively, both Class and Method instances may be represented by a Collaboration
instance.

The reification of a Relationship instance as a Class instance impacts the semantics of
name spaces. As described in section 6, the Name instance of a Relationship instance
must be unique relative to the Element instances that are connected by the Relationship
instance. However, the Name instance associated with a Class instance must be unique
within its enclosing name space, as described in section 2. Thus, when a Relationship
instance is reified as a relationship class, the Name instance associated with the
Relationship instance must satisfy stronger semantics for uniqueness.

As described in section 5, Component and Node are both subtypes of Type. Therefore,
Component and Node participate in the specification/realization dichotomy of the UML.
Specifically, Component and Node instances may both the be the refinement of Type
instances, meaning that it is possible to specify the interfaces of a Component or a Node.

As subtypes of Type, Component and Node instances both have the same properties as
Type. Most commonly, however, Component and Node instances do not have any signals
or members associated with them.

Similarly, as described in section 6, Type instances may participate in Generalization and
Association relationships. Since Component and Node are both subtypes of Type,
Component and Node instances may also participate in these relationships.

The semantics of threads interact with the semantics of StateMachine instances, as
described in section 10. Specifically, each ActiveClass instance has associated with it
exactly one event queue, where by events posted to the ActiveClass instance as well as all
of the other instances in the scope of that thread are sequentialized. Also as described in
section 10, the UML predefines certain Operation instances that are implicit Member

60 UML v 1.0, Semantics

instances of every ActiveClass instance; these Operation instances exist to manipulate the
ActiveClass instance’s event queue.

8.4 STANDARD ELEMENTS
There are eight standard stereotypes that apply to the metamodel classes described in this
diagram:

Name Applies to Semantics
application Component An application is a stereotyped Component

representing an executable program.

document Component A document is a stereotyped Component
representing a document.

file Component A file is a stereotyped Component representing
a document containing source code.

library Component A library is a stereotyped Component
representing a static or a dynamic library.

page Component A page is a stereotyped Component
representing a Web page.

process ActiveClass A process is a stereotyped ActiveClass
representing a heavy-weight flow of control.

table Component A table is a stereotyped Component
representing a data base table.

thread ActiveClass A thread is a stereotyped ActiveClass
representing a light-weight flow of control.

There is one standard tagged value that applies to the metamodel classes described in this
diagram:

Name Value Applies to Semantics
location Component

Node

ModelElement

Component

Location is a derived value
of the implementation of a
ModelElement instance on
collection of Component
instances, and of a
Component instance on a
collection of Node instances.

UML v 1.0, Semantics 61

9. STRUCTURAL ELEMENTS: COLLABORATIONS

A collaboration is a mechanism, consisting of structural elements and behavioral elements. Collaborations are an
organizational mechanism of the UML, but unlike packages, collaborations have identity and semantic impact. The
same element may be a member of more than one collaboration, but the occurrence of an element in each specific
collaboration denotes a different society of elements.

ModelElement
(from Core Concepts)

{or}

0..*

Constraint
(from Core Concepts)

0..*

0..*

Note
(from Core Concepts)

0..*

0..*

Relationship
(from Core Concepts)

0..*

0..*

Type

0..*

0..*

Behavior
(from Behavioral Elements)

0..1

0..10..*
Value

0..10..*
Parameter

0..1

Type

0..*

0..1

Operation

0..*

0..*

0..*

Instance

Collaboration

+ isTemplate : Boolean

0..*

0..*

constraints

0..*

0..*

notes

0..*

0..*

relationships

0..*

0..*

types

0..*

0..1

behaviors

0..10..*

collaboration argument

0..10..*

collaboration parameter

0..1

0..*

represents

0..1

0..*

represents

0..*

0..*

instances

9.1 DESCRIPTION
This diagram describes the semantics of collaborations in the UML, and includes the
following metamodel classes:

Behavior A behavior is an observable effect.

Collaboration A collaboration is a mechanism, consisting of structural
elements and behavioral elements.

Constraint Described in section 3

Instance Described in section 5

ModelElement Described in section 2

Note Described in section 3

Operation Described in section 7

62 UML v 1.0, Semantics

Parameter Described in section 7

Relationship Described in section 3

Type Described in section 5

Value Described in section 5

This diagram also introduces the following relationships:

behaviors Behaviors is a composite aggregation of a collaboration to a
collection of behaviors. The behaviors are the behaviors of
the collaboration.

collaboration Collaboration argument is a composite aggregation of a
argument collaboration to a collection of values. A value is a

collaboration argument to a parameter of a template
collaboration.

collaboration Collaboration parameter is a composite aggregation of a
parameter collaboration to a collection of parameters. A parameter is a

template parameter of a template collaboration.

constraints Constraints is a shared aggregation of a collaboration to a
collection of constraints. The constraints are the constraints
of the collaboration.

generalization Collaboration is a subtype of ModelElement.

instances Instances is a shared aggregation of a collaboration to a
collection of instances. The instances are the instances in
the collaboration.

notes Notes is a shared aggregation of a collaboration to a
collection of notes. The notes are the notes of the
collaboration.

relationships Relationships is a shared aggregation of a collaboration to a
collection of relationships. The relationships are the
relationships of the collaboration.

represents Represents is an association between a type or operation
and the collaboration it represents. The collaboration
represents the type or operation.

types Types is a shared aggregation of a collaboration to a
collection of types. The types are the types of the
collaboration.

UML v 1.0, Semantics 63

9.2 BASIC SEMANTICS
Collaboration is a subtype of ModelElement. The responsibility of Collaboration is to
specify a mechanism, consisting of structural elements and behavioral elements. A
Collaboration instance represents a set of collaborating Type instances, so assembled
because that society names a conceptually interesting group.

A Collaboration instance has very different semantics than a Package instance. Both are
structuring mechanisms, however, Package instance are only structural whereas
Collaboration instances are both structural and behavioral. Furthermore, the contents of a
Collaboration instance may transcend Package instance boundaries;

The Name attribute associated with a Collaboration instance represents the name of the
Collaboration instance; its name must not be the null name. the isTemplate attribute of
Collaboration is a Boolean specifying if the Collaboration instance is a template or not. A
template Collaboration is a generative Collaboration that is not manifest but rather must
first be instantiated. A template Collaboration instance may have parameters but may not
have any arguments, and a non-template Collaboration instance may have parameters and
may or may not have any arguments (it may have arguments only if the non-template
Collaboration instance represents an instantiation of a template Collaboration instance).
The default value of isTemplate is False.

Parameter is an unbound expression. Collaboration parameter is a is a composite
aggregation of a collaboration to a collection of parameters. Only Collaboration instances
whose isTemplate attribute is True may have template parameters. Every Parameter
instance in a collaboration parameter is a part of zero or one Collaboration instances, and
every Collaboration instance may have zero or more Parameter instances. The Name
instances of the Parameter instances become names that are visible to the template
Collaboration instance and can be used in the scope of the template in a manner that
conforms to the type of the Parameter instance.

Value is a bound value of an expression. Parameter argument is a composite aggregation
of a collaboration to a collection of values. Only a non-template Collaboration instance
may have collaboration arguments, and then only when the Collaboration instance
represents an instantiation of a template Collaboration instance. The responsibility of
collaboration argument is to provide a collection of Value instances that bind the
collaboration parameters of the unbound template Collaboration instance which the non-
template Collaboration instance is instantiating. The collaboration argument Value
instances of the non-template Collaboration instance must match the collaboration
parameter Parameter instances of the template Collaboration instance in order and must
conform in type (but not necessarily in name). Furthermore, the collaboration argument
Value instances of the non-template Collaboration instance must involve only those Type
instances that are visible to the non-template Collaboration instance.

A Collaboration instance shares structural elements, including Type, Relationship,
Constraint, and Note instances, and owns behavioral elements

64 UML v 1.0, Semantics

The structural dimension of a Collaboration instance arises from the relationships named
types, relationships, constraints, notes, and instances, each of which is a shared
aggregation from a Collaboration instance to a collection of Type, Relationship,
Constraint, Note, and Instance instance, respectively. Each Collaboration instance may
share zero or more of these Element instances, and each such Element instance may be
shared by zero or more Collaboration instances. By implication, the same Collaboration
instance structurally encloses a society of collaborating Type instances, and each such
Type instance may be a participant in multiple different Collaboration instances. Because
this is a shared aggregation, creating and destroying a Collaboration instance does not
impact the lifetime of any of the Element instances it encloses, although destroying one of
its shared Element instances removes that Element instance and the transitive closure of
its parts from each Collaboration instance of which it is a shared part. A Collaboration
instance may encompass any Type, Relationship, Constraint, Note, and Instance instance
within the scope that the Collaboration instance is declared.

The dynamic dimension of a Collaboration instance arises from the relationship named
behaviors, which is a composite aggregation from a Collaboration instance to a collection
of Behavior instances. Every Collaboration instance may have zero or more Behavior
instances, and every such Behavior instance is owned by zero or one Collaboration
instance.

Represents is an association between a type or operation and the collaboration it
represents. Representation is essentially a shift in levels of abstraction. Given a Type or
Operation instance and the Collaboration instance that it represents, the Collaboration
instance is said to represent the given Type or Operation instance, but viewed from a
lower level of abstraction. Every Collaboration instance is the representation of zero or
one Type or Operation instance. Every Type and Operation instance may be represented
by zero or more Collaboration instances. Collaboration instances may stand alone,
meaning that they are not the representation of any Type or Operation.

Collaboration instances have a essence/manifestation dichotomy, but this dichotomy is
not made manifest; herein, Collaboration is in effect a type, and its instances are implied.
This is not to be confused with templates: a Collaboration instance may be parameterized.
Collaboration parameter is a composite aggregation of a collaboration to a collection of
parameters. Furthermore, Collaboration argument is a composite aggregation of a
collaboration to a collection of values.

9.3 DERIVED SEMANTICS
The semantics of ModelElement are described in section 2.

The semantics of Note and Constraint are described in section 3.

The semantics of Instance are described in section 5.

The semantics of Type, Operation, Value, and Parameter are described in section 7.

UML v 1.0, Semantics 65

The semantics of Behavior are described in sections 9 and 10.

The Behavior instances associated with a Collaboration instance may include both
StateMachine instances as well as Interaction instances. As described in section 10,
StateMachine instances specify the behavior of a Collaboration instance, meaning that
they specify all potential behavior. As described in section 11, Interaction instances
reflect the behavior of Collaboration instance, meaning that they record prototypical
behaviors. Collaboration instances may include both kinds of Behavior instances to
capture their dynamic dimension. The former kind (StateMachine instances) are
essentially constructive: they specify all possible paths of behavior, whereas the latter
kind (Collaboration instance) are essentially prototypical: each specifies on path of
behavior. In this manner, the two views must complement one another: for a given Type
instance, the StateMachine must specify behavior that is a superset of that found in a
Collaboration instance, and the collection of all such Collaboration instances must
conform to that potential behavior.

A Collaboration instance may have zero or more Behavior instances associated with it.
Since Behavior is a subtype of Element, Behavior instances may have Stereotype
instances associated with them (furthermore, all of the common mechanisms described in
section 3 apply to Behavior instances as well). It is common to use Stereotype instances
to distinguish different kinds of Behavior instances, such as primary and secondary
behaviors.

A Collaboration instance represents a Type as well as any subtype of Type. This means
that a Collaboration instance may be the representation of a Type, Class, ActiveClass,
Component, Node, and UseCase instance.

Applying a Collaboration instance to a Type, Class, or a subtype of Class instance permits
a statement of the semantics of that Element instance. This may be an outside view -
specifying the meaning of the Element instance without proscribing its realization - as
well as an inside view - specifying the behavior of its realization. In the former case, the
structural dimension of the Collaboration instance would contain Element instances that
describe the vocabulary of that Type. In the latter case, the structural dimension of the
Collaboration instance would contain Element instances that draw from the Member
instances and neighbors of that Type. Furthermore, the behavioral dimension of the
Collaboration instance permits UseCase instances to be associated with a Type instance
(and its subtypes, although in most cases this only applies to Class): as described above, a
Collaboration instance may have Type instances and as described in section 5, UseCase is
a subtype of Type, hence, a Collaboration instance may have UseCase instances. A
UseCase instance associated with a Type instance must conform with any lower level
UseCase instances that might be attached to parts of the Type instance.

Applying a Collaboration instance to a UseCase instance permits a statement of the
semantics of that UseCase instance. As described in section 5, UseCase is a subtype of
Type, and therefore UseCase inherits all of the properties of Type, including the ability to
specify a Collaboration instance that represents the UseCase instance. This separation of

66 UML v 1.0, Semantics

UseCase instance and the Collaboration instance that realizes it permits a clear separation
of specification and representation of the UseCase semantics. These semantics interact
with the semantics of instances as described in section 5. Whereas a UseCase instance
may have associated with it Behavior instances that specify the all potential behavior
associated with a UseCase instance, an Instance instance representing an instance of a
UseCase instance is a scenario, representing a single manifest flow of actions. This, this
Instance instance may have an associated Behavior instance representing that flow, drawn
from all the potential behavior specified in the UseCase instance.

Applying a Collaboration instance to an Operation instance permits a statement of the
semantics of that Operation. As described in section 8, Method is a subtype of Operation,
and so these semantics apply to Method instances as well.

As described in section 5.4, refinement is a stereotyped Dependency relationship whose
source is a Type, Class, Collaboration, Or Method instance, and whose target is a Type,
Collaboration, or Operation instance. The representation relationship from a Type
instance to a Collaboration instance and an Operation to a Collaboration instance is a
refinement relationship.

Collaboration is a subtype of Element, and so as described in section 3, Collaboration
instances may have associated Stereotype, TaggedValue, Dependency, Note, and
Constraint instances. Collaboration instances may only participate in Dependency
relationships.

9.4 STANDARD ELEMENTS
There are two standard stereotypes that apply to the metamodel classes described in this
diagram, namely, refinement (described in section 5.4) and bind (described in section
7.4).

There are two synonyms that applies to the metamodel classes described in this diagram:

Synonym Definition
framework A framework is a package consisting mainly of patterns.

pattern A pattern is a template collaboration.

UML v 1.0, Semantics 67

10. BEHAVIORAL ELEMENTS: STATE MACHINES
A state machine is a behavior resulting from operations carried out over a sequence of state changes. A state machine
may be viewed from the perspective of states (via state diagrams) or of actions (via activity diagrams). A state machine
specifies the behavior of a collaboration.

ModelElement
(from Core Concepts)

Expression
(from Core Concepts)

BooleanExpression

Relationship
(from Core Concepts)

ActionState

Pseudostate

+ kind : {initial, final, history}

{ordered}

{implicit}

{or}

0..*

0..1

Operation
(from Structural Elements)

0..*

0..* 0..*

0..1
Instance

(from Structural Elements)

0..*

0..1

Signal
(from Structural Elements)

0..*

0..*

Action

0..*

0..1

dispatch

0..*

0..*
 actual argument

0..*

0..1 target

0..*

0..1
invocation

0..*

Attribute
(from Structural Elements)

0..1

0..*

1

1..*

0..1

CompositeState

+ isConcurrent : Boolean

0..*

1
StateMachine

0..1

Event

1

0..1

ActionExpression

+ referencedActions () : List of Action

0..*

0..*

references

1

0..*

0..1
State

0..*

0..1

state variable

1..* 0..*

1..*

StateVertex

0..*

1

vertices

1..*

0..1

substate
0..*

Transition

+ guard : BooleanExpression

0..*

1

transitions

0..1

1
trigger

0..11

effect

0..*

0..1 internal transition

1..* 0..*source

1..* 0..*target

ModelElement
(from Core Concepts)

0..*
BehaviorInstance

0..1
Behavior

0..* 0..1

instance of

ModelElement
(from Core Concepts)

0..*

CallEvent

0..1

Operation
(from Structural Elements)

0..*

0..1
occurrence

0..*

SignalEvent

0..1

Signal
(from Structural Elements)

0..*

0..1
occurrence

0..*

TimeEvent

0..1

TimeExpression

0..*

0..1
occurrence

10.1 DESCRIPTION
This diagram describes the semantics of state machines in the UML, and includes the
following metamodel classes:

Action An action is the invocation of a signal or an operation,
representing a computational or algorithmic procedure.

ActionExpression An action expression is an expression that resolves to a
collection of actions.

ActionState An action state is a state with no substates and exactly one
internal transition (on do) with an action expression that
resolves to a single operation.

Attribute Described in section 6

68 UML v 1.0, Semantics

Behavior A behavior is an observable effect including its results.

BehaviorInstance Described in section 5.

BooleanExpression A Boolean expression is an expression that resolves to a
Boolean value.

CallEvent A call event is an event triggered by an operation.

CompositeState A composite state is a state with substates.

Event An event is a significant occurrence in time/space.

Expression Described in section 4

Instance Described in section 5

ModelElement Described in section 2

Operation Described in section 7

Pseudostate A pseudostate is a non-state vertex. Pseudostates include
initial, final, and history connections.

Relationship Described in section 3

Signal Described in section 5

SignalEvent A signal event is an event triggered by a signal.

State Described in section 5

StateMachine A state machine is behavior specified as a collection of
actions carried out over a sequence of state changes. A state
machine specifies the behavior of a collaboration of types.

StateVertex A state vertex is a source or a target of a transition.

TimeEvent A time event is an event triggered by the passing of time.

TimeExpression A time expression is an expression that resolves to a
relative or absolute value of time.

Transition A transition is the passage from one state vertex to another.

This diagram also introduces the following relationships:

actual argument Actual argument is a shared association of an action to its
actual arguments. The instances are the actual arguments of
the action.

effect Effect is a composite aggregation of a transition to at most
one action exression.

generalization Action is a subtype of model element.

Action expression is a subtype of expression

UML v 1.0, Semantics 69

Action state is a subtype of state.

Behavior is a subtype of model element.

Behavior instance is a subtype of model element.

Boolean expression is a subtype of expression.

Call event is a subtype of event.

Composite state is a subtype of state.

Event is a subtype of model element.

Pseudostate is a subtype of state vertex.

Signal event is a subtype of event.

State is a subtype of state vertex.

State machine is a subtype of behavior.

State vertex is a subtype of model element.

Time event is a subtype of event.

Time expression is a subtype of expression.

Transition is a subtype of relationship.

instance of Instance of is an association between a behavior instance
and its behavior, indicating that the behavior instance is a
concrete manifestation of the behavior. A behavior
instance is an instance of a behavior.

internal transition Internal transition is a composite aggregation of a state to a
collection of transitions. The named transition is an internal
transition of the state.

invocation Invocation is a shared aggregation of an action to an
operation. The action is the invocation of the operation.

Invocation is a shared aggregation of an action to a signal.
The action is the invocation of the signal.

occurrence Occurrence is a shared aggregation of a call event to an
operation. A call event is an occurrence of an operation.

Occurrence is a shared aggregation of a signal event to a
signal. A signal event is an occurrence of a signal.

Occurrence is a shared aggregation of a time event to a time
expression. A time event is an occurrence of a time event as
manifest in a time expression.

70 UML v 1.0, Semantics

references References is an association between an action expression
and a collection of actions, indicating that the action
expression references a given action or actions. An action
expression references zero or more actions.

source Source is a bidirectional association between state vertices
and transtions. A state vertex may be the source of multiple
transitions, and multiple state vertices may be the source of
a single transition.

state variable State variable is a composite aggregation of a state to a
collection of attributes. The attributes are the state variables
of the state.

substate Substate is a composite aggregation of a composite state to
a collection of state vertices. The state vertices are the
substates of the composite state.

target Target is a bidirectional association between state vertices
and transtions. A state vertex may be the target of multiple
transitions, and multiple state vertices may be the target of
a single transition.

Target is a shared association of an action to its target. The
instance is the target of the action.

transitions Transitions is a composite aggregation of a state machine to
a collection of transitions. The transitions are the direct
transitions of the state machine.

trigger Trigger is a composite association of a transition to at most
one event. The event is the trigger of the transition.

vertices Vertices is a composite aggregation of a state machine to a
collection of state vertices. The state vertices are the
immediate state vertices of the state machine.

10.2 BASIC SEMANTICS
Behavior is an abstract subtype of ModelElement. The responsibility of Behavior is to
name an observable effect.

BehaviorInstance is a subtype of ModelElement. The responsibility of BehaviorInstance
is to specify the concrete manifestation of a Behavior instance. Whereas a Behavior
instance provides the specification of an observable effect, a BehaviorInstance instance
manifests that Behavior instance in time/space, meaning that the BehaviorInstance
instance represents the occurrence of an observable effect that exists in time and space.

Instance of an an association between a BehaviorInstance instance and its Behavior
instance. The responsibility of instance of is to specify that the BehaviorInstance instane

UML v 1.0, Semantics 71

is a concrete manifestation of the BehaviorInstance. Every Behavior instance may have
zero or more BehaviorInstance instances, and every BehaviorInstance instance is the
instance of not more than one Behavior instance. In most cases, every BehaviorInstance
instance is the instance of exactly one Behavior instance. However, it is possible to
specify BehaviorInstance instances that have no Behavior, as is often the case in
incomplete and/or evolving models.

StateMachine is a subtype of Behavior. The responsibility of StateMachine is to specify a
collection of actions carried out over a sequence of state changes. The name of a
StateMachine instance is a Name instance representing the name of the StateMachine; its
value may not be a null name. A StateMachine instance defines a name space. None of
the parts of a StateMachine instance are visible outside of the StateMachine instance; all
of the parts of a StateMachine instance are visible within the StateMachine instance, even
if they are nested (in which case their names must be qualified if used outside of their
scope).

StateVertex is an abstract subtype of ModelElement. The responsibility of StateVertex is
to represent the source or the target of a Transition instance.

Vertices is a composite aggregation of a StateMachine instance to a collection of
StateVertex instances. The responsibility of vertices is to specify the immediate
StateVertex instances that compose the StateMachine instance. Because each
StateMachine instance defines a name space, the names of each StateVertex instance
owned by a given StateMachine must be unique.

BooleanExpression is a subtype of Expression. The responsibility of BooleanExpression
is to specify an expression that resolves to a Boolean instance.

Transition is a subtype of Relationship. The responsibility of Transition is to specify the
passage from one StateVertex instance to another; this passage represents a state change.
The name of a Transition instance is a Name instance representing the name of the
Transition; its name is typically the null name. The guard attribute of a Transition
instance is a BooleanExpression that specifies a condition for the trigger of the Transition
instance. The default value of guard is True. The value of guard need not be static, but
may involve BooleanExpression instances that are drawn from names that are visible to
the Transition instance.

Transitions is a composite aggregation of a StateMachine instance to a collection of
Transition instances. The responsibility of Transitions is to specify the immediate and the
nested Transitions that compose the StateMachine instance.

Source is a bidirectional association between StateVertex instances and Transition
instances. The responsibility of source is to specify the source or sources of a Transition
instance. A given StateVertex instance may be the source of zero or more Transition
instances, and every Transition instance may have one or more sources. By implication,
every Transition instance must have at least one source (there may be no dangling

72 UML v 1.0, Semantics

Transition instances). Furthermore, a given Transition instance may have multiple
sources; this is a join, representing a synchronization among all of the sources, each of
which must be a concurrent State instance. A Transition instance with multiple sources
must have exactly one target.

Target is a bidirectional association between StateVertex instances and Transition
instances. The responsibility of target is to specify the target or targets of a Transition
instance. A given StateVertex may be the target of zero or more Transition instances, and
every Transition instance must have at least one target (there may be no dangling
Transition instances). Furthermore, a given Transition instance may have multiple targets;
this is a fork, representing a concurrent set of Transition instances leading to concurrent
State instances. A Transition instance with multiple targets must have exactly one source;
the targets of such a Transition instance must refer to concurrent StateVertex instances.

State is a subtype of StateVertex. The responsibility of State is to specify the condition of
an instance at a given moment in time/space. The name of a State instance is a Name
instance representing the name of the State; its name must not be the null name. A State
instance defines a name space.

ActionState is a subtype of State. The responsibility of an ActionState is to specify a State
instance with no substates and exactly one internal Transition instance (on do) with an
effect whose ActionExpression instance resolves to an Action instance that invokes
exactly one Operation instance.

State variable is a composite aggregation of a State instance to a collection of Attribute
instances. The responsibility of state variable is to specify attributes of the state. Every
State instance may have zero or more Attribute instances, and every Attribute instance
may be a state variable of zero or one State instances. Each state variable is declared in
the scope of some enclosing State instance.

Internal transition is composite aggregation of a State instance to a collection of
Transition instances. The responsibility of internal transitions is to specify the internal
transitions of the State instance. An internal transition represents a Transition instance
whose source and target are the same State instance, but with the dynamic semantics that
triggering an internal transition does not leave the State instance, nor does it cause that
State instance’s entry, do, exit transitions to be executed. In fact, as described below,
entry, do, and exit are predefined internal transitions. It is possible to define other internal
transitions. Internal transitions are just Transition instances, and so may have guards,
triggers, and effects.

Pseudostate is a subtype of StateVertex. The responsibility of Pseudostate is to specify all
non-state vertices, including initial, final, and history connections. The kind attribute of
Pseudostate specifies the kind of the non-state vertex. The default value of kind is initial.
An initial Pseudostate instance represents a start state; an initial Pseudostate may not be
the target of any Transition instance. There must be exactly one initial Pseudostate
instance that is immediately part of a StateMachine instance, as well as exactly one initial

UML v 1.0, Semantics 73

Pseudostate immediately part of every CompositeState instance. Any Transition instance
for which an initial Pseudostate instance is a source must not have any trigger (but may
have an effect). A final Pseudostate instance represents a final state; a final Pseudostate
may not be the source of any Transition instance. A history Pseudostate instance
represents a history marker, whose presence affects the dynamic semantics of a State
instance as described below; a history Pseudostate instance may be the source of a
Transition instance. Final and history Pseudostate instances are optional; each
StateMachine and CompositeState instance need not include any Pseudostate instances.

CompositeState is a subtype of State. The responsibility of CompositeState is to specify a
state containing one or more substate State instances. The name of a CompositeState
instance is a Name instance representing the name of the CompositeState; its name must
not be the null name. As a kind of State, a CompositeState instance defines a name space.
The isConcurrent attribute of a CompositeState instance is a Boolean that specifies that
the substates of the given State instance are considered concurrent. The default value of
isConcurrent is False. A concurrent State instance represents an orthogonal state that
participates in a flow of control independent of its peer concurrent State instances.

Substate is a composite aggregation of CompositeState instance to a collection of
StateVertex instances. The responsibility of substate is to specify the StateVertex
instances that are a part of a CompositeState instance. Every CompositeState instance
may have one or more substates, and every substate belongs to exactly one
CompositeState instance (StateVertex instances that are immediate vertices of a
StateMachine instance are not owned by any CompositeState instance).

Event is an abstract subtype of ModelElement. The responsibility of Event is to specify a
significant occurrence in time/space. An Event instance never has a Name instance.

Trigger is a composite aggregation of a Transition instance to at most one Event instance.
The responsibility of trigger is to specify the Event instance that initiates a state change
from the source (or sources) of the Transition instance to its target (or targets). Every
Transition instance may have zero or one Event instance, and every Event instance is a
part of exactly one Transition instance. Note that it is possible for a Transition instance to
have no trigger; such a Transition instance is considered to be an unconditional transition.

BooleanExpression is a subtype of Expression. The responsibility of BooleanExpression
is to provide an Expression instance that resolves to a Boolean instance.

TimeExpression is a subtype of Expression. The responsibility of TimeExpression is to
provide an Expression instance that resolves to a Time instance. In this context, the Time
instance represents an absolute or relative time event that may trigger a Transition
instance.

SignalEvent is a subtype of Event. The responsibility of SignalEvent is to specify an
Event instance triggered by the invocation (sending) of a Signal instance.

74 UML v 1.0, Semantics

CallEvent is a subtype of Event. The responsibility of CallEvent is to specify an Event
instance triggered by the invocation of an Operation instance.

TimeEvent is a subtype of Event. The responsibility of TimeEvent is to specify an Event
instance triggered by the passing of time.

Occurrence is a shared aggregation of a SignalEvent, CallEvent, and TimeEvent instance
to a Signal, Operation, or TimeExpression instance, respectively. The responsibility of
occurrence is to specify the invocation (sending) of a Signal instance, the invocation of an
Operation instance, or the time event of a TimeExpression instance that may trigger a
Transition instance. Every Signal, Operation, and TimeExpression instance may manifest
itself as zero or more Event instances, but every Event instance is the occurrence of
exactly one Signal, Operation, or TimeExpression instance.

ActionExpression is a subtype of Expression. The responsibility of ActionExpression is
to provide an Expression instance that resolves to the reference of one or more Action
instances, where reference denotes a using rather than a defining occurrence of the Action
instance. The operation referencedActions returns a list of Action instances referenced by
the ActionExpression instance.

References is an association between an ActionExpression and a collection of Action
instances, indicating that the ActionExpression instance references a collection of Action
instances. The responsibility of references is to establish the relationship between an
Action instance and the ActionExpression instances in which it is referenced. Every
Action instance may be referenced in zero or more ActionExpression instances, and every
ActionExpression instance references zero or more Action instances. References is an
implicit relationship, meaning that it is not manifest but rather is derivable from the value
of the ActionExpression itself.

Effect is a composite aggregation of a Transition instance to an ActionExpression
instance. The responsibility of effect is to specify the effect of a transition. Every
Transition instance may have no more than one ActionExpression instance as an effect,
and every ActionExpression is the effect of exactly one Transition instance. Note that it is
possible for a Transition instance to have no effect.

Action is a subtype of ModelElement. The responsibility of Action is to specify the work
carried out as the effect of a state change. An Action instance never has a Name instance.

Invocation is a shared aggregation of an Action instance to a Signal or an Operation
instance. The responsibility of invocation is to specify the invocation of a Signal or an
Operation instance. Every Signal and Operation instance may manifest itself in zero or
more Action instances, but every Action instance is the invocation of exactly one Signal
or Operation instance.

Target is shared association of an Action instance to an Instance instance. The
responsibility of target is to specify the target of the Signal or Operation instance that is

UML v 1.0, Semantics 75

invoked by an Action instance. Every Instance instance may be the target of zero or more
Action instances, and every Action instance has no more than one target Instance
instance.

Actual argument is a shared association of an Action instance to a collection of Instance
instances representing the actual arguments of the Operation instance invoked by an
Action instance. Every Instance may be the actual argument of zero or more Action
instances, and every Action instance may have zero or more Instance instances as actual
arguments. Where an Action instance does have actual arguments and the Action is an
invocation of an Operation instance, these Instance instances are ordered, and must match
the formal parameters of the corresponding Operation instance in number, order, and by
their type. Where an Action instance does have actual arguments and the Action is an
invocation of a Signal instance, these Instance instances are ordered, and must match the
Attribute instances of the corresponding Signal instance in number, order, and by their
type.

A StateMachine instance may be executed; execution represents the dynamic behavior of
the StateMachine instance.

A StateMachine instance has run-to-completion processing, meaning that it is not
interruptible. A StateMachine instance can react at any given time to exactly one Event
instance applied by some external Instance instance. Upon invocation of an Event
instance, execution of the StateMachine instance proceeds until it reaches a stable state,
whereupon it may wait for another Event instance or react to a new or already queued
Event instance. By implication, this means that Event instances that represent the
occurrence of a time event do not introduce a time out.

Execution of a StateMachine instance begins with the initial Pseudostate instance that is
directly a part of the StateMachine instance. This initial Pseudostate instance must be the
sole source of a Transition instance that has no trigger. Execution proceeds with the
evaluation of the Transition instance’s effect, if there is one.

It is possible for an initial Pseudostate instance to be the source of multiple Transition
instances, each of which has no trigger, but some of which have guards. The choice of
which Transition to follow observes the semantics of leaving a State instance as described
below. It must always be possible to transition from an initial Pseudostate instance.

Evaluation of an effect involves evaluating every Action instance referenced by the given
ActionExpression, in order of its occurrence in the List instance returned by
referencedActions. Evaluation of an Action instance involves invoking the associated
Signal or Operation instance targeted at the given target Instance instance. For those
Action instances that invoke an Operation instance, the Action instance’s actual
arguments are used to invoke the associated Operation instance. The evaluation of an
effect is not interruptible; all Action instances run to completion. By implication,
occurrences of Signal, Operation, or TimeExpression instances that may trigger an Event
instance upon the Instance instance that encloses the StateMachine instance are queued.

76 UML v 1.0, Semantics

Immediately upon completion of the evaluation of an effect, execution of a StateMachine
instance proceeds to the target StateVertex instances of the Transition instance, according
to the following three cases.

First consider the case where a Transition instance has exactly one target, which is an
instance of State or ActionState (but not an instance of CompositeState). Execution of the
StateMachine instance proceeds with this State instance being entered. If there is an entry
internal Transition instance associated with the State instance, its guard attribute is
evaluated. If this guard evaluates to True, then the effect of the entry internal Transition
instance is evaluated. After completion of the evaluation of this effect, the StateMachine
instance is said to be in this State instance. Execution of the StateMachine instance waits
until conditions arise that cause a state transition, as described below. At this point, if
there are is a do internal transition, the Action instance associated with the do transtion is
begun.

Second, consider the case where a Transition instance has exactly one target, which is an
instance of CompositeState. Execution of the StateMachine instance proceeds with this
CompositeState instance being entered. If there is an entry internal Transition associated
with this CompositeState instance, its guard attribute is evaluated. If this guard evaluates
to True, then the effect of the entry internal Transition instance is evaluated. After
completion of the evaluation of this effect, the StateMachine instance is said to be in this
CompositeState instance. At this point, if there is a do transition, the Action instance
associated with the do transition is begun. Furthermore, execution of the StateMachine
instance proceeds to the initial Pseudostate instance that is directly a part of the
CompositeState instance. This initial Pseudostate instance must be the sole source of
Transition instance that has no trigger. Execution proceeds with the evaluation of the
Transition instance’s effect, if there is one. Thus, the StateMachine instance is said to be
in both the CompositeState instance and some substate. Execution of the StateMachine
instance waits until conditions arise that cause a state transition, as described below.

Third, consider the case where a Transition instance has more than one target. In such a
case, these targets must represent State instances, all but one of which represents a
concurrent CompositeState instance. Execution of the StateMachine instance proceeds
with all of the concurrent CompositeState instances being entered as above, the difference
being that such a transition represents a fork in the flow of control of the StateMachine
instance, yielding concurrent flows.

Immediately upon reaching a stable state under any of above three cases, execution of a
StateMachine instance proceeds depending upon the presence of any pending Event
instances and upon the properties of all Transition instances for which the current State
instance is a source, according to the following three cases.

First, consider the case where a State instance is the source of several Transition
instances, exactly one of which has no trigger. The guard of this trigger is evaluated
exactly once. If this guard evaluates to False, the State instance is not left, and execution
of the StateMachine suspends, pending the next Event instance. If the guard evaluates to

UML v 1.0, Semantics 77

True, then execution proceeds with this State instance being left. If there is an exit
internal Transition instance associated with the State instance, its guard attribute is
evaluated. If this guard evaluates to True, then the effect of the exit internal Transition
instance is evaluated. After completion of the evaluation of this effect, execution of the
StateMachine instance proceeds with the evaluation of the sole triggerless Transition
instance (also known as a spontaneous transition) as above (its guard is not reevaluated,
but its effect, if any, is evaluated as above). By implication, this is a transitory State
instance; the StateMachine instance is in that State instance for an insignificant amount of
time (namely, only during the evaluation of the State instance’s entry, do, and exit effect,
if any).

Second, consider the case where a State instance is the source of several Transition
instances, more than one of which has no trigger. The guards of each of these triggerless
Transition instances are evaluated exactly once, in a nondeterministic order not specified
by the UML. If all of these guards evaluate to False, the State instance is not left, and
execution of the StateMachine instance proceeds as above. If exactly one of these guards
evaluates True, the State instance is left and execution of the StateMachine instance
proceeds as above, following the one triggerless Transition instance whose guard
evaluated True. If more than one of these guards evaluates True, the execution of the
StateMachine instance is nondeterministic: execution will proceed as above, following
only one of the triggerless Transition instances whose guard evaluated True, the choice of
which is implementation dependent.

Third, consider the case where a State instance is the source of several Transition
instances, all of which have triggers. Execution of the StateMachine instance proceeds,
waiting in the State instance for a pending Event instance. Upon receipt of an Event
instance, execution continues with an evaluation of all Transition instances for which that
State instance is a source and whose trigger is that Event instance. This yields three
possible cases. First, consider the case where there is an Event instance, but no Transition
instance is triggered by that Event instance. In such as case, the Event instance is ignored
(and in effect discarded) and execution proceeds with the StateMachine in a stable state,
specifically, in the same State instance as before the invocation . Second, consider the
case where there is an Event instance, and exactly one Transition instance triggered by
that Event instance. The guard of this Transition instance is evaluated exactly once. If this
guard evaluates to False, the State instance is not left, and the Event instance is ignored
(and in effect discarded). If this guard evaluates to True, then the State instance is left and
execution of the StateMachine instance proceeds as above, following the one Transition
instance triggered by the Event instance. Third, consider the case where there is an Event
instance, and more than one Transition instance triggered by that Event instance. The
guards of these Transition instances are evaluated in an order not determined by the
UML. If exactly one of these guards evaluates True, the State instance is left and
execution of the StateMachine instance proceeds as above, following the one Transition
instance triggered by the Event instance. If more than one of these guards evaluates True,
the State instance is left and execution of the StateMachine instance proceeds as above,
following only one of the Transition instances triggered by the Event instance, the choice
of which is implementation dependent.

78 UML v 1.0, Semantics

In the event of Event instances that trigger internal Transitions instances (other than the
predefined entry, do, and exit internal Transition instances), execution proceeds as above,
the difference being that evaluation of an internal Transition instance does not reevaluate
the entry, do, and exit internal Transition instances associated with the State instance. The
implication of these semantics are that the State instance is not left in the face of an
internal Transition instance.

Internal Transition instance should not be confused with self transitions, the latter of
which are Transition instance that are not internal transitions but whose source and target
are the same State instance. Unlike internal Transition instances, evaluation of a self
transition causes reevaluation of the State instance’s entry, do, and exit internal Transition
instances (if any exist).

The above three cases have further implications, depending upon if the State instance is a
substate of a CompositeState instance of if the State instance is a CompositeState with
substates.

First, consider the case of the State instance being a substate of a CompositeState. If
execution of the StateMachine instance follows a Transition instance from the substate to
outside its enclosing CompositeState, then leaving the substate also leaves the
CompositeState instance. This means that immediately after the exit internal Transition
instance of the substate is evaluated (if one exists), then the exit internal Transition
instance of the enclosing CompositeState instance is evaluated (if one exists), and so on,
to the outermost CompositeState instance beyond which the Transition instance is
targeted.

Second, consider the case of the State instance being a CompositeState with substates. If
execution of the StateMachine instance follows a Transition instance from the superstate,
then the substates are left first (in order of their nesting, from innermost to outermost),
causing evaluation of their exit internal Transition instance (if they exist

There may be conditions whereby both a substate and a superstate are be able to respond
to the same Event instance at the same moment in time/space. In such a case, the
innermost Transition instance takes priority.

The above semantics address a state change from peer-to-peer State instances, and from
inner-to-outer State instances. There are further implications for Transition instances
whose source is an outer State instance and whose target is an inner State instance. If
execution of a StateMachine instance proceeds with a transition to a substate, then the
superstates are entered first (in order of their nesting, from outermost to innermost),
causing evaluation of their entry internal Transition instances (if they exist).

Two additional dynamic semantics interact with the above semantics.

First, a final Pseudostate instance may be the target of one or more Transition instances.
When the execution of a StateMachine instance reaches a final Pseudostate instance, the

UML v 1.0, Semantics 79

StateMachine instance is said to be terminated, and all future Event instances directed to
the StateMachine instance are ignored, and the StateMachine instance manifests no
further effects (and represents the destruction on the enclosing Instance instance).

Second, a history Pseudostate instance may be the target of one or more Transition
instances. A history Pseudostate instance is never the source of a Transition instance. A
CompositeState instance may have at most one immediate history Pseudostate instance.
When transitioning to a CompositeState instance which contains a history Pseudostate
instance, execution proceeds as above, with the initial Pseudostate instance of the
CompositeState instance entered. When transitioning to the history Pseudostate instance
of the CompositeState instance, execution does not proceed with the initial Pseudostate
instance, but rather, execution proceeds with the innermost substate that was last left
upon leaving the CompositeState. Initially, a CompositeState instance has no history, and
so the CompositeState instance itself is considered the last left State instance.

10.3 DERIVED SEMANTICS
The semantics of ModelElement are described in section 2.

The semantics of Name, Boolean, Expression, and Time are described in section 4.

The semantics of Instance are described in section 5.

The semantics of Relationship are described in section 6.

The semantics of Signal, Attribute, and Operation are described in section 7. In most
cases, a Signal instance has no associated Operation instances.

Note that Signal and Operation appear in this section connected to both Event and Action.
Connected to Action, Signal and Operation represent invocations; connected to Event,
Signal and Operation represent receipt. Thus, these relationships provide closure: an
Event or Operation produced in one StateMachine instance may be consumed in another.

As described in section 5, Signal is a subtype of Class (which in turn is a subtype of
Type), and as described in section 6, Type instance may participate in Generalization
relationships. Hence, it is common to define hierarchies of Signal instances. These
semantics interact with the semantics of triggering a Transition instance as described
above. Specifically, triggering a Transition instance via a SignalEvent instance is
polymorphic. For example, consider a simple hierarchy with a Signal instance S and its
two subtypes S1 and S2. Consider also some Transition instance T whose trigger is
specified via a SignalEvent instance. If the trigger of T is S1, then this Transition instance
will fire only upon receipt of an instance of S1 (and thus will not fire upon receipt of an
instance of S or S2). On the other hand, if the trigger if T is S, then this Transition
instance will fire upon receipt of an instance of S or its subtypes, S1 and S2. In this
manner, the response to a Signal instance trigger is said to be polymorphic.

80 UML v 1.0, Semantics

Expression is not a subtype of ModelElement, and therefore neither are
ActionExpression, BooleanExpression, or TimeExpression.

Behavior/BehaviorInstance are part of the essence/manifestation dichotomy in the UML.

Behavior is a subtype of ModelElement, and therefore Behavior instances may have
Stereotype, TaggedValue, Note, and Constraint instances attached (as well as participate
in Dependency relationships).

Behavior appears in two other places in the metamodel: in section 5 as part of a Type
(and Instance) instance and in section 9 as a part of a Collaboration instance. As part of a
Type instance, a Behavior instance states the meaning of the Type instance independent
of its realization. In such a context, the target of Action instances in associated
StateMachine instances may be absent, in which case the target is assumed to be the
Instance instance of the enclosing Type instance. As part of a Collaboration instance, a
Behavior instance states the meaning of the society of Type instances that collaborate in
the Collaboration instance (and hence are often used to represent the realization of a Type
or Operation instance).

There are exactly two subtypes of Behavior, StateMachine and Interaction. The semantics
of Interaction are described in section 11. Both kinds of Behavior instances may be used
to state the semantics of the Type or Collaboration instance to which the Behavior
instances are attached, but in different ways. Whereas a StateMachine instance specifies
the semantics of a behavior, an Interaction instance reflects these behavioral semantics.
Put another way, an StateMachine instance specifies the potential behavior of the Type or
Collaboration instance to which it is attached, whereas an Interaction instance only states
a simple path through one behavior under specific circumstances. Thus, a StateMachine
instance may yield a large number of corresponding Interaction instances (each showing
specific paths through all the potential paths of behavior); furthermore, a set of
Interaction instances (each of which states a prototypical behavior) may be combined to
specify the StateMachine instances of each of the participants that appear in each of the
Interaction instances. In this manner, StateMachine instances and Interaction instances
attached to the same Type or Collaboration instance complement one another.
Theoretically, only one of these Behavior subtypes is necessary to expression the
behavioral semantics of a Type or Collaboration instance, but practically, both are useful,
because they give the modeler a choice.

Another important distinction between the semantics of StateMachine and Interaction is
the fact that StateMachine instances generally specify the behavior of a single type,
whereas Interaction instances typically cut across many such types.

As described in section 11, Behavior instances may include clusters specified by
Collaboration instances. These Collaboration instances are typically used to specify
“swimlanes” in the corresponding ViewElement instance.

UML v 1.0, Semantics 81

StateMachine instances represent the model behind StateDiagram instances, which are
described in section 12; such diagrams represent behavioral diagrams that are organized
by state. StateMachine instances whose vertices are only ActionState instances (and not
State or CompositeState instances) represent the model behind ActivityDiagram
instances, which are described in section 12; such diagrams represent behavioral
diagrams that are organized by action.

Because Transition is a subtype of Relationship, the Name instance of each Transition
instance must be unique across its sources and targets, as described in section 6 for the
semantics of Relationship instance names. Also as described in that section, the semantics
of destroying the sources and/or targets of a Transition instance guarantee that there may
be no dangling Transition instances.

The Name instance associated with a Transition is typically null. If not null, this Name
instance may be used in Constraint instances within the scope of the StateMachine
instance to specify time constraints. Furthermore, these names may be used in
TimeExpression instances. In both contexts, a Transition name may be used to represent
the time of that transition. Specifically, a Name instance N represents the start of the
transition (upon the occurrence of the Event instance) and N’ represents the end of the
effect of the transition (after the completion of all Action instances that form). Using
these names permits complex Constraint and TimeExpression instances to be created,
involving times relative to an event (for example, N + 30 microseconds would
represent a time 30 microseconds after N).

The guard BooleanExpression instance associated with a Transition may involve
arbitrarily complex expressions. Some of the conditions of such Expression instances
may include references to the state of a StateMachine instance. Specifically, the
occurrence of the Name instance of a StateVertex instance in a guard BooleanExpression
represents a predicate testing if the named StateMachine instance is in that state.

An Event is described as specifying a significant occurrence in time/space and not just in
time, because of the interaction of Event semantics with that of Node semantics. As
described in section 8, a Node instance represents a physical part upon which Component
instances may be deployed. By implication, each Node instance represents an independent
processing element in a distributed system. In any such system, relativistic semantics
apply, meaning that there is no such thing as a simultaneous event: every observer will
see different events. For this reason, Event instances are guaranteed to be unique only
within some time/space context, not simply a time context.

As described in section 8, each ActiveClass instance defines a separate event queue.
These semantics guarantee that, in the context of an ActiveClass instance, exactly one
Event instance will be handled by the associated StateMachine instance at one time. Since
State instances are not interruptible, this means that any Event instances that are invoked
during the execution of an Action instance are queued. It is possible to write
ActionExpression instances that manipulate this queue (for example, to purge the queue,
remove an event from the queue, or to query the queue), but such operations are not a part

82 UML v 1.0, Semantics

of the core UML, but rather must be modeled as part of the enclosing ActiveClass
instance.

The Signal and Operation instances for which an Event instance is the occurrence may be
any Signal or Operation instance that is visible to the StateMachine instance, either
directly (via the Type instance that owns the Behavior instance) or indirectly (via the
Collaboration instance that owns the Behavior instance). Similarly, the Signal and
Operation instances which are invoked by an Action instance may be any Signal or
Operation instance that is visible to the StateMachine instance, either directly or
indirectly. Finally, the Instance instances that are the target or actual arguments of an
Action instance may be any Instance instance that is visible to the StateMachine instance,
either directly or indirectly. These Instance instances include, but are not limited to state
variables, formal parameters of Operation instances visible to the StateMachine instance,
an Attributes instances of the Type instance that encloses the StateMachine instance. In
this sense, these Instance instances are not fully manifest, but represent prototypical
named instances.

A StateMachine instance may include Action instances that send Signal instances to the
same Instance instance that encloses the StateMachine instance. This kind of self-
referential triggering is allowed; any such Signal instance become an occurrence of an
Event instance which may trigger a Transition instance in the same StateMachine
instance. Since all such events are queued on the closest ActiveClass instance that
encloses the StateMachine instance, this Signal instance will itself be queued.

As described in section 6, Type instance may participate in generalization relationships.
Thus, the StateMachine instances owned by such Type instances are themselves inherited.
A subtype Type instance inherits the StateMachine instances of its supertype Type
instances. The UML specifies no rules about clashes among these inherited StateMachine
instances except to say that the semantics of substitutability must still hold, as described
in section 6; specifying a formal model here is beyond the scope of practicality. The UML
does permit subtype Type instances to add new StateVertex and Transition instances to its
inherited StateMachine instances, but again requiring that the semantics of substitutability
still hold.

Sending a Signal or Operation instance to an Instance instance that is the instance of a
composite type (meaning that the Type instance has composite aggregation relationship to
other Type instances) does not implicitly send the Event instance to all of its parts. To
achieve this effect, it is necessary that the StateMachine instance associated with the Type
instance (for which the Instance instance is an instance of) explicitly state an
ActionExpression instance that sends the same trigger instance to its parts.

The run-to-completion semantics of a StateMachine instance interact with the semantics
of the predefined do transition. The Action instance associated with a do transition is in
fact not interruptable; however, the implementation of an Operation instance associated
with the do Action instance may periodically check to see if there are pending events
(using the predefined _hasEvent operation), and if there are events, complete its

UML v 1.0, Semantics 83

processing so that the event can be handled. Note that these semantics do not specify
implicit interruptability - the StateMachine instance runs-to-completion, but the modeler
may specify points where the presence of an event is tested.

10.4 STANDARD ELEMENTS
There are no standard stereotypes, tagged values or notes that apply to the metamodel
classes described in this diagram.

As described in section 10.3, there are three predefined names for Transition instances,
namely, entry , do , and exit .

There is one synonym that applies to the metamodel classes described in this diagram:

Synonym Definition
activation An activation is the execution of an operation.

84 UML v 1.0, Semantics

11. BEHAVIORAL ELEMENTS: INTERACTIONS

An interaction is a behavior resulting from the colaboration of a collection of instances. An interaction may be viewed
from the perspective of time (via sequence diagrams) or of space (via collaboration diagrams). An interaction reflects the
behavior of a collaboration.

ModelElement
(from Core Concepts)

{ordered}

ModelElement
(from Core Concepts)

Relationship
(from Core Concepts)

1

Action

0..1 0..*
0..1

Name
(from Core Concepts)

0..* 0..1

AssociationRole
(from Structural Elements)

0..*

Value
(from Structural Elements)

0..1
0..*

1

0..* 0..1

Association
(from Structural Elements)

2 .. *

1
thread owner

0..1

0..*

Message

+ recurrence : String
+ sequence : String
+ isAsynchronous : Boolean
+ direction : {activation, return}
+ script : Uninterpreted
+ synchronizationPoint : String

1
0..1

action 0..*
0..1 transaction

participant
1

0..*
LinkRole

0..* 0..1

role instance

0..*

0..1
qualification0..*

1

messages

0..*

Link

+ isCreated : Boolean
+ isDestroyed : Boolean 0..* 0..1

link instance

2 .. *

1
link roles

1

0..*

Instance

+ isCreated : Boolean
+ isDestroyed : Boolean

(from Structural Elements)

0..1

0..*

thread

1

0..*player

0..1
Interaction

0..*
1

links

0..*
0..1

instances

0..1
Behavior

0..*

Collaboration
(from Structural Elements)

0..10..*

clusters

11.1 DESCRIPTION
This diagram describes the semantics of interactions in the UML, and includes the
following metamodel classes:

Action Described in section 10

Association Described in section 6

AssociationRole Described in section 6

Behavior Described in section 5

Instance Described in section 5

Interaction An interaction is a behavior reflected by the collaboration
of an interacting society of instances. An interaction reflects
the behavior of a collaboration of types.

UML v 1.0, Semantics 85

Link A link is a relationship among instances across which
messages may be sent.

LinkRole A link role is the face that an instance plays in a link.

Message A message is the sending of an action.

ModelElement Described in section 2

Name Described in section 2

Collaboration Described in section 9

Relationship Described in section 3

Value Described in section 5

This diagram also introduces the following relationships:

action Action is a composite aggreation of a message to an action.
The action is the action of the message.

clusters Clusters is a composite aggregation of a behavior to a
collection of collaborations. The collaborations are clusters
of the behavior.

generalization Interaction is a subtype of behavior.

Link is a subtype of relationship.

LinkRole is a subtype of model element.

Message is a subtype of model element.

instances Instance is a composite aggregation of an interaction to a
collection of instances. The instances are instances that
collaborate in the interaction.

link instance Link instance is an association between a link and an
association, indicating that the link is the instance of the
association.

link roles Link roles is a composite aggregation of a link to its link
roles. A link has two or more link roles.

links Links is a composite aggregation of an interaction to a
collection of links. The links are the links that connect the
collaborators in an interaction.

messages Messages is a composite aggregation of a link role to a
collection of messages. The messages are the messages
attached to the link role.

86 UML v 1.0, Semantics

player Player is an association between an instance and a link role,
indicating that the instance plays the given role. The
instance is thus a participant in the link.

qualification Qualification is a composite aggregation of a link role to a
collection of values. The vales are the qualification of the
link role.

role instance Role instance is an association between a link role and an
associatoin role, indicating that the link role is the instance
of the association role.

thread Thread is an association between an instance and a
message, indicating that the instance names the thread in
which the given message is invoked. The instance is thus
the thread owner.

transaction Transaction is a shared aggregation of a message to a name.
The name is the transaction of the message.

11.2 BASIC SEMANTICS
Interaction is a subtype of Behavior. The responsibility of Interaction is to reflect the
behavior of an interacting society of instances. The name of an Interaction instance is a
Name instance representing the name of the Interaction; its value may not be a null name.
An Interaction instance defines a name space.

Clusters is a composite aggregation of a Behavior instance to a collection of
Collaboration instances. The responsibility of clusters is to specify interesting groups of
Instance instance and Link instances in the context of a Behavior instance.

Instance is a subtype of ModelElement. The isCreated attribute of an Instance instance is
a Boolean that specifies if the Instance instance has just been created. The default value of
isCreated is False. The isDestroyed attribute of an Instance instance is a Boolean that
specifies if the Instance instance has just been destroyed. The default value of isDestroyed
is False. It is possible but rare to have both attribute values True, in which case the
Instance instance is first created and then immediately destroyed.

Instances is a composite aggregation of an Interaction instance to a collection of Instance
instances. The responsibility of instances is to specify the Instance instances that compose
the Interaction instance. Every Interaction instance may have zero or more Instance
instances, and every Instance instance may be a part of zero or one Interaction instances.
Because each Interaction instance defines a name space, any Instance instances that are
instances in the Interaction instance and that have the same name are considered to
represent the same instance (but potentially with different values, actions, state value, and
roles).

UML v 1.0, Semantics 87

Link is a subtype of Relationship. The responsibility of Link is to represent a relationship
among instances across which messages may be sent. The name of a Link instance is a
Name instance representing the name of the Link; its name is typically the null name. The
isCreated attribute of a Link instance is a Boolean that specifies if the Link instance has
just been created. The default value of isCreated is False. The isDestroyed attribute of a
Link instance is a Boolean that specifies if the Link instance has just been destroyed. The
default value of isDestroyed is False. It is possible but rare to have both attribute values
True, in which case the Link instance is first created and then immediately destroyed.

Links is a composite aggregation of an Interaction instance to a collection of Link
instances. The responsibility of Links is to specify the Link instances that compose the
Interaction instance. Every Interaction may have zero or more Link instances, and every
Link instance belongs to exactly one Interaction instance.

Link instance is an association between a Link instance and an Association instance. The
responsibility of Link instance is to specify that the Link instance is an instance of the
Association instance. Every Link instance is the instance of no more than one Association
instance, and every Association instance has zero or more Link instances.

LinkRole is a subtype of ModelElement. The responsibility of LinkRole is to specify the
face that an instance plays in a Link instance. The name of a LinkRole instance is a Name
instance representing the name of the LinkRole; its name is typically the null name.

Link roles is a composite aggregation of a Link instance to a collection of LinkRole
instances. The responsibility of link roles is to specify the roles of the Link instances. For
a Link instance that is the instance of an Association instance, the LinkRole instances of
the Link instance must match the corresponding AssociationRole instances. Every
LinkRole instance is thus the link role of exactly one Link instance, and every Link
instance has two or more LinkRole instances, with the same number and corresponding
order as the corresponding Association instance. Link roles is an ordered aggregation; by
convention, the Instance instance associated with the first LinkRole instance in a Link
instance is the implicit sender of any Message attached to that LinkRole instance.

Role instance is an association between a LinkRole instance and an AssociationRole
instance. The responsibility of role instance is to specify that the LinkRole instance is an
instance of the AssociationRole instance. Every LinkRole instance is the instance of no
more than one AssociationRole, and every AssociationRole has zero or more LinkRole
instances.

Qualification is a composite aggregation of a LinkRole instance to a collection of Value
instances. The responsibility of qualification is to specify the values for the LinkRole
instance corresponding to any Attribute instances of the corresponding AssociationRole
instance. The Value instances of a LinkRole instance must match the corresponding
Attribute instances in order and in type.

88 UML v 1.0, Semantics

Player is an association between an Instance instance and a LinkRole instance. The
responsibility of player is to specify that the Instance instance is a player in the LinkRole
instance. Every Instance instance may be the player in zero or more LinkRole instances,
and every LinkRole instance may be the LinkRole for one Instance instance. The type of
the Instance instances must match the type of the corresponding participant of the
corresponding AssociationRole instance.

Message is a subtype of ModelElement. The responsibility of Message is to specify the
sending of an Action instance. The name of a Message instance is a Name instance
representing the name of the Message; its name is typically the null name. The
synchronizationPoint attribute of a Message instance is a String that specifies a collection
of thread qualified sequence numbers, each of which must match the sequence number of
some Message instance in the Interaction instance, the meaning of which is that the
Message instance may not be entered during execution until all of the Messages instances
referred to in the guard have been reached. The syntax of a synchronizationPoint string is
specified according to the following production rules:

synch_string ::= qualified_sequence {‘,’ synch_string}
qualified_sequence ::= [number | thread_name]

 {‘.’ qualified_sequence}

The number represents a sequential order of the sequence within the next higher level of
Action instance invocation. Sequences that differ in one integer term are sequentially
related at that level of nesting. The thread name represents the name of a concurrent flow
of control (which must be some instance of an ActiveClass). The default value of
synchronizationPoint is the null String instance.

The sequence attribute of a Message instance is a String instance representing the order of
the Message instance in the context of a given thread specified as simple sequence
numbers. The syntax of a sequence string is specified according to the following
production rules:

sequence_string ::= number {‘.’ sequence_string}

The default value of the sequence attribute is the null String instance.

The recurrence attribute of a Message instance is a String instance representing
conditional or iterative execution. The syntax of a recurrence string is specified according
to the following production rules:

recurrence_string ::= ‘*’ ‘[‘ iteration_clause ‘]’
recurrence_string ::= ‘[‘ condition_clause ‘]’

An iteration clause represents a repeat of the execution of a Message instance at the given
nesting depth. A condition clause represents a predicate upon which execution of the
Message instance is contingent. Both the iteration clause and the condition clause are

UML v 1.0, Semantics 89

meant to be expressed in pseudocode or an actual programming language; their precise
syntax is outside the scope of the UML.

The default value of the recurrence attribute is the null String value.

The isAsynchronous attribute of a Message instance is a Boolean instance representing if
the Message instance is sent synchronously or not. The default value of isAsynchronous
is False, meaning that the Instance instance that invoked the Message instance suspends
until the action of the Message instance is complete. A value of True means that the
Instance instance that invoked the Message instance does not wait for the action of the
Message instance to complete.

The direction attribute of a Message instance is an enumeration representing if the
Message instance is an activation or a return. The default value of direction is activation.

The script attribute of a Message instance is an Uninterpreted instance, the purpose of
which is to represent pseudocode describing the meaning of the Message instance in the
context of the Interaction instance.

Messages is a composite aggregation of a LinkRole instance to a collection of Message
instances. The responsibility of messages is to specify the Message instances attached to
the LinkRole instance. Ever LinkRole instance may have zero or more Message instances,
and every Message instance is the message of exactly one LinkRole instance.

Action is a composite aggregation of a Message instance to an Action instance. The
responsibility of action is to specify the Action instance of a Message instance. Every
Message instance has exactly one Action instance, and every Action instance is the action
of zero or one Message instances.

Transaction is a shared aggregation of a Message instance to a Name instance. The
responsibility of transaction is to group a collection of Message instance as a transaction,
meaning that the group is treated as an behavior that can be rolled back.. Every Message
instance may have no more than one Name instance representing a transaction, and every
Name instance representing a transaction may relate to zero or more Message instances.

Thread is an association between an Instance and a Message instance. The responsibility
of thread is to specify the flow of control under which the Message instance is invoked.
The Instance instance must be an instance of an ActiveClass instance; the name of the
instance is the name of the thread. Every Instance instance may be the thread for zero or
more Message instances, and every Message instance may be associated with no more
than one thread. Often, the thread wherein a Message instance executes is not made
explicit.

An Interaction instance reflects the execution of a sequence of Message instances;
execution represents the dynamic behavior of a society of Instance instances.

90 UML v 1.0, Semantics

Execution of an Interaction instance begins with all Message instances whose sequence
number is 1 for each independent thread. Activation of a Message instance is the
evaluation of an Action instance. Execution proceeds to the next sequentially numbered
Mesage instance, tempered by any guards, iteration clauses, and condition clauses which
may suspend, repeat, or branch a flow of control, respectively. Starting a nested sequence
number represents a nested activation.

11.3 DERIVED SEMANTICS
The semantics of ModelElement are described in section 2.

The semantics of Name are described in section 4.

The semantics of Instance and Value are described in section 5.

The semantics of Relationship, Association, and AssociationRole are described in section
6.

The semantics of Collaborations are described in section 9. In this context, Collaboration
instances that serve as the clusters of a Behavior instance are typically used to specify
“swimlanes” in the corresponding ViewElement instance.

The semantics of Behavior are described in sections 9 and 10. As described in section 10,
Behavior/BehaviorInstance are part of the essence/manifestation dichotomy of the UML.

The semantics of Action are described in section 10.

Link, LinkRole, and Message are all subtypes of ModelElement, and therefore instances
of each may have Stereotype, TaggedValue, Note, and Constraint instances attached (as
well as participate in Dependency relationships).

As described in section 10, StateMachine and Interaction are the two subtypes of
Behavior. Interaction instances reflect the behavioral semantics of a Type or
Collaboration instance. As such, an Interaction instance states a prototypical behavior.
From collections of Interaction instances, it is possible to compose a partial or full
StateMachine instance for each of the Instance instances that participate in the Interaction
instances.

Interaction instances represent the model behind InteractionDiagram and
CollaborationDiagram instances, which are described in section 12; such diagrams
represent behavioral diagrams that are organized by time and by space, respectively.

Parts of Interaction instances may be related to other Interaction instances. For example, a
Link instance in an Interaction instance may be the instance of an Association instance
that is the reification of a Collaboration instance. Thus, this Link instance may expand to
another Interaction instance. Similarly, the Operation instance invoked by the Action
instance of a Message instance may expand to another Interaction instance, since as

UML v 1.0, Semantics 91

described in section 9, an Operation instance may be represented by a Collaboration
instance, which in turn may have Behavior instances.

As described in section 9, Collaboration instances share Instance and Relationship
instances. This means that it is possible, within the same Interaction instance, to group
these Element instances in arbitrary and overlapping ways.

The name instance associated with a Message is typically null. If not null, this Name
instance may be used in Constraint instances within the scope of the Interaction instance
to specify time constraints. In this context, a Message name N represents the start of the
message and N’ represents the end of the evaluation of the Message instance.

The isAsynchronous attribute of Message distinguishes between synchronous and
asynchronous messages. Other forms of synchronization may be specified using
appropriate TaggedValue instance, none of which are defined as standard elements of the
UML

Instance instances with the same Name instance in a given Interaction instance represent
the same instance. Dependencies among such same-named instances may be shown, most
often using the becomes and copy stereotypes as described in section 5. Such instances
may be rendered with potentially with different values, actions, state value, and roles.

Type/Instance, Association/Link, AssociationRole/LinkRole, Attribute/Value,
Signal/Message, and Operation/Message each form an essence/manifestation pair.

11.4 STANDARD ELEMENTS
There are seven standard constraints that apply to the metamodel classes described in this
diagram:

Name Applies to Semantics
association LinkRole Association is a constraint applied to a link

role, specifying that the corresponding instance
is visible via association.

broadcast Message Broadcast is a constraint applied to a message,
specifying that it is not invoked in any specific
order.

global LinkRole Global is a constraint applied to a link role,
specifying that the corresponding instance is
visible because it is in a global scope.

local LinkRole Local is a constraint applied to a link role,
specifying that the corresponding instance is
visible because it is a local variable of an
operation.

92 UML v 1.0, Semantics

parameter LinkRole Parameter is a constraint applied to a link role,
specifying that the corresponding instance is
visible because it is a parameter if an operation.

self LinkRole Self is a constraint applied to a link role,
specifying that the corresponding instance is
visible because it is the dispatcher of a message
or a part of the dispatcher.

vote Message Vote is a constraint applied to a collection of
return messages, specifying that the return
value is selected by a majority vote of all the
return values in the collection..

UML v 1.0, Semantics 93

12. VIEW ELEMENTS: VIEW ELEMENTS

A view element is a textual and graphical projection of a collection of model elements. The UML predefines a number of
such graphical projections as common diagrams.

UseCaseDiagram ClassDiagram StateDiagram

ComponentDiagram DeploymentDiagram

SequenceDiagram

CollaborationDiagramActivityDiagram

Projection

+ placement : List of Point
+ style : Uninterpreted

0..*

ViewElement
(from Core Concepts)1..*

ModelElement
(from Core Concepts) 0..*1..*

projection

Diagram

ObjectDiagram

12.1 DESCRIPTION
This diagram describes the view elements of the UML, and includes the following
metamodel classes:

ActivityDiagram An activity diagram encompasses states and their
relationships, organized by actions, and is used to specify
the behavior of an operation.

ClassDiagram A class diagram encompasses types, classes, and their
relationships.

CollaborationDiagramA collaboration diagram encompasses instances and their
relationships (including messages), organized by space.

ComponentDiagram A component diagram encompasses components and their
relationships.

94 UML v 1.0, Semantics

DeploymentDiagram A deployment diagram encompasses components, nodes,
and their relationships.

Diagram A diagram is a graphical projection of a collection of model
elements, most often rendered as a connected graph of arcs
(relationships) and vertices (other model elements).

ModelElement Described in section 2

ObjectDiagram An object diagram encompasses instances and their
relationships.

Projection Described in section 2

SequenceDiagram A sequence diagram encompasses instances and their
relationships (including messages), organized by time.

StateDiagram A state diagram encompasses states and their relationships,
organized by state, and is used to specify the overall
behavior of a type.

UseCaseDiagram A use case diagram encompasses actors, use cases, and
their relationships.

ViewElement Described in section 2

This diagram also introduces the following relationships:

generalization Activity diagram is a subype of diagram.

Class diagram is a subtype of diagram.

Collaboration diagram is a subtype of diagram.

Component diagram is a subtype of diagram.

Deployment diagram is a subtype of diagram.

Diagram is a subtype of view element.

Object diagram is a subtype of diagram.

Sequence diagram is a subtype of diagram.

State diagram is a subtype of diagram.

Use case diagram is a subtype of diagram.

projection Described in section 2

12.2 BASIC SEMANTICS
The responsibility of ViewElement is to provide a textual and graphical projection of a
collection of ModelElement instances. Projection in this context means that the
ViewElement instance represents a human readable notation for the corresponding

UML v 1.0, Semantics 95

ModelElement instances. The human readable notation for each ModelElement instance
is not defined in the UML metamodel, but rather is defined in the UML notation
summary.

Projection is a shared aggregation of a ViewElement instance to a collection of
ModelElement instances. For each projection of a ViewElement instance over a
ModelElement instance, there is a Projection instance. The responsibility of Projection is
to specify the placement and style of a ModelElement instance in the context of a
ViewElement instance. The placement attribute of Projection provides a list of Point
instances whose value specifies the placement of the projection of the ModelElement
instance in the ViewElement instance. For all ModelElement instances that are projected
as icons, symbols, and strings, this placement can generally be specified in a single Point
instance. For all ModelElement instances that are projected as paths, this placement can
generally be specified in a list consisting of two or more Point instances. The style
attribute of Projection provides a value of an Uninterpreted instance whose purpose is to
specify the style of the projection, including but not limited to indicating the shape, color,
typeface, elision, and sound associated with the corresponding ModelElement instance.
The implication of this attribute is that the same ModelElement instance may be projected
in two or more ViewElement instances, but appear to the reader with different visual
cues. The default placement of the projection of a ModelElement instance is the origin
point and the default style is the null uninterpreted value.

Diagram is an abstract subtype of ViewElement. The responsibility of Diagram is to
provide a graphical projection of a collection of ModelElement instances, most often
rendered as a connected graph of arcs and vertices. Implementations are free to introduce
new subtypes of ViewElement, although the most common projections are addressed by
Diagram.

The ModelElement instances projected in a given Diagram instance may be drawn from
any part of a System instance. In other words, the contents of a given Diagram instance
may transcend any and all boundaries of Model instance packaging and visibility. These
semantics have three important implications. First, Diagram instances may include
projections of ModelElement instances from distant Package instances, even if the
contents of each of those Package instances are not visible to one another (but they are
always visible to the modeler). Second, the projection of a given ModelElement may be
elided, meaning that the properties of that ModelElement may be selectively projected,
with some parts shown and other parts suppressed. For example, a Diagram instance may
have a projection of a Class instance, but with only the associated Stereotype instance,
Name instance, and public Member instances rendered. Third, the projection of a given
ModelElement instance may be expanded, meaning that derived properties of that
ModelElement instance may be selectively projected, showing certain parts reached by
walking the metamodel relationships from that first instance. For example, a Diagram
instance may be a projection of a Class instance, but with some of the Member instances
inherited from all of its supertypes also shown.

96 UML v 1.0, Semantics

A Diagram instance may project other than ModelElement instances. For example, n-ary
Association instances, forked and joined Transition instances, and incomplete
Generalization instance models require visual elements that can be derived from a Model
instance but are not themselves manifest in a Model instance.

In practice, there are a small number of common groupings of ModelElement instances
within a Diagram instance. Because these groupings are generally useful and encourage
the recommended process associated with the UML, they are predefined in the UML
metamodel as the eight subtypes of Diagram described above. This is an incomplete
subtyping, meaning that the UML does not prohibit the creation of other kinds of
diagrams. The contents of each of these diagrams is described above. Note that these are
general groupings: for example, a StateDiagram instance is defined to encompass states
and their relationships, but it is not unusual for such a diagram to include instances and
types as well.

12.3 DERIVED SEMANTICS
The semantics of List, Point, and Uninterpreted are described in section 3.

The semantics of ModelElement are described in section 2.

ViewElement is a subtype of Element, and therefore all ViewElement (and by
implication, Diagram) instances may have Name, Stereotype, TaggedValue, Note, and
Constraint instances attached. The only meaningful kind of Dependency instances that
may involve ViewElement instances are trace Dependency instances. ViewElement is not
a subtype of ModelElement, and therefore a ViewElement instance may not provide a
projection of ViewElement instances.

ObjectDiagram is essentially a degenerate kind of CollaborationDiagram, wherein only
the structural aspects of instances are shown. ComponentDiagram is essentially a
degnerate kind of DeploymentDiagram, wherein only components (without their
deployment to nodes) are shown.

Additional kinds of diagrams can be specified as a stereotyped Diagram instance or as a
stereotype of one of the predefined kinds of Diagram subtypes.

12.4 STANDARD ELEMENTS
There are two synonyms that apply to the metamodel classes described in this diagram:

Synonym Definition
interaction
diagram

An interaction diagram is a sequence diagram or a collaboration
diagram.

state chart A state chart is a state diagram.

UML v 1.0, Semantics 97

13. STANDARD ELEMENTS

13.1 DESCRIPTION
Stereotypes, tagged values, and constraints are the mechanisms of extensibility in the
UML. Stereotypes extend the classes in the metamodel, tagged values extend the
attributes of classes in the metamodel, and constraints extend the semantics of the
metamodel. Certain stereotypes, tagged values, and constraints are predefined in the
UML; others may be user defined. This section summarizes all of the predefined
stereotypes, tagged values, and constraints of the UML, which collectively are called the
standard elements of the UML.

13.2 BASIC SEMANTICS
The semantics of stereotypes, tagged values, and constraints are described in section 3.

All of the predefined stereotypes, tagged values, and constraints of the UML either have
strong semantics that interact with other elements of the UML metamodel or are
important properties that transcend any specific development process. Others stereotypes,
tagged values, and constraints may be layered on top of the UML to provide process-
specific tailorings.

13.3 DERIVED SEMANTICS
The mechanisms of extensibility are a fundamental part of the UML. Therefore, user
defined stereotypes, tagged values, and constraints may be a part of any well-formed
model. However, any semantics attached to these user defined elements are guaranteed
only for the System instance in which these elements are defined. The UML does not nor
cannot require or rely upon the semantics of any user defined or extended stereotype,
tagged value, or constraint.

13.4 STANDARD ELEMENTS
The following 35 stereotypes are predefined in the UML:

Name Applies to Defined in
actor Type 5.4

application Component 8.4

becomes Dependency 5.4

bind Dependency

Collaboration

7.4

9.4

98 UML v 1.0, Semantics

call Dependency 7.4

constraint Note 3.4

copy Dependency 5.4

derived Dependency 2.4

document Component 8.4

enumeration PrimitiveType 5.4

extends Generalization 6.4

facade Package 2.4

file Component 8.4

friend Dependency 2.4

import Dependency 2.4

instance Dependency 5.4

interface Type 5.4

library Component 8.4

metaclass Dependency

Type

7.4

7.4

page Component 8.4

powertype Dependency

Type

6.4

6.4

process ActiveClass 8.4

refinement Dependency 5.4

requirement Note 3.4

role Dependency 6.4

send Dependency 7.4

signal Class 5.4

stub Package 2.4

subclass Generalization 6.4

subtype Generalization 6.4

table Component 8.4

thread ActiveClass 8.4

trace Dependency 2.4

uses Dependency 6.4

UML v 1.0, Semantics 99

utility Type 7.4

The following 10 tagged values are predefined in the UML:

Name Value Applies to Defined in
documentation String Element 2.4

invariant Uninterpreted Type 7.4

location Component

Node

ModelElement

Component

7.4

7.4

persistence Enumeration Type

Instance

Attribute

5.4

5.4

5.4

postcondition Uninterpreted Operation 7.4

precondition Uninterpreted Operation 7.4

responsibility String Type 5.4

semantics Uninterpreted Type

Operation

7.4

7.4

space semantics Uninterpreted Type

Operation

7.4

7.4

time semantics Uninterpreted Type

Operation

7.4

7.4

The following 14 constraints are predefined in the UML:

Name Applies to Defined in
association LinkRole 11.4

broadcast Message 11.4

complete Generalization 6.4

disjoint Generalization 6.4

global LinkRole 11.4

implicit Association 6.4

incomplete Generalization 6.4

local LinkRole 11.4

or Association 6.4

100 UML v 1.0, Semantics

ordered AssociationRole 6.4

overlapping Generalization 6.4

parameter LinkRole 11.4

self LinkRole 11.4

vote Message 11.4

UML v 1.0, Semantics 101

Index

A
abstraction, 4, 5, 7, 9, 31, 38, 51, 57, 58, 73
Action, 23, 49, 67, 68, 69, 72, 74, 75, 76, 79, 80, 81, 82,

84, 85, 88, 89, 90
ActionExpression, 11, 23, 67, 72, 74, 75, 80, 81, 82
actions, 25, 27, 28, 30, 33, 51, 66, 67, 68, 70, 71, 91, 93
ActionState, 67, 72, 76, 81
activation, 83, 89, 90
ActiveClass, 24, 27, 29, 30, 39, 55, 56, 58, 59, 60, 65, 81,

82, 88, 89, 98
Activity, 94
ActivityDiagram, 81, 93
actual argument, 68, 75, 82
application, 60, 97
Association, 10, 18, 30, 31, 34, 35, 37, 38, 39, 41, 48, 49,

56, 59, 84, 87, 90, 91, 96, 99
association class, 56
AssociationRole, 31, 34, 37, 38, 39, 41, 48, 84, 87, 88, 90,

91
Attribute, 28, 29, 30, 31, 32, 33, 34, 38, 39, 42, 43, 46, 49,

50, 58, 67, 72, 75, 79, 87, 91, 99

B
becomes, 25, 27, 31, 97
Behavior, 10, 28, 30, 31, 44, 47, 50, 51, 59, 61, 64, 65, 66,

68, 69, 70, 71, 80, 82, 84, 86, 90, 91
BehaviorInstance, 24, 28, 29, 30, 31, 68, 70, 80, 90
behaviors, 43, 44, 62, 64, 65
bind, 45, 52, 63, 66, 97
Boolean, 11, 20, 21, 23, 44, 46, 63, 68, 69, 71, 73, 79, 86,

87, 89
BooleanExpression, 11, 23, 68, 71, 73, 80, 81
broadcast, 45, 91, 99

C
call, 52, 68, 69, 98
CallEvent, 68, 74
characteristic, 14, 15, 16, 17, 25, 26
Class, 10, 24, 25, 27, 28, 29, 30, 31, 32, 39, 48, 49, 50, 55,

56, 57, 58, 59, 65, 66, 79, 94, 95, 98
ClassDiagram, 93
classification, 5, 14, 36, 38
client, 54
clusters, 80, 85, 86, 90
Collaboration, 10, 50, 51, 59, 61, 62, 63, 64, 65, 66, 80,

82, 85, 86, 90, 91, 94, 97
collaboration argument, 62, 63
CollaborationDiagram, 90, 93, 96
complete, 2, 3, 11, 40, 41, 48, 49, 82, 89, 99
Component, 24, 25, 27, 29, 30, 39, 50, 55, 56, 57, 58, 59,

60, 65, 81, 94, 97, 98, 99
ComponentDiagram, 93, 96

composite, 5, 6, 7, 9, 14, 16, 26, 28, 34, 35, 36, 37, 38, 41,
42, 43, 44, 45, 46, 47, 50, 56, 58, 62, 63, 64, 68, 69, 70,
71, 72, 73, 74, 82, 85, 86, 87, 89

CompositeState, 68, 73, 76, 78, 81
compound_name, 22
condition_clause, 88
Constraint, 10, 11, 13, 14, 17, 18, 30, 50, 61, 64, 66, 80,

81, 90, 91, 96
copy, 31, 91, 98

D
define, 5, 9, 10, 16, 31, 52, 57, 72, 79
Dependency, 4, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 27, 29,

30, 31, 39, 40, 47, 48, 50, 51, 52, 58, 59, 66, 80, 90, 96,
97, 98

DeploymentDiagram, 94, 96
deploys, 56
derived, 1, 11, 15, 17, 26, 39, 50, 56, 59, 60, 95, 96, 98
Diagram, 18, 22, 94, 95, 96
discriminant, 36, 41
disjoint, 40, 99
document, ii, 1, 2, 3, 6, 60, 98
documentation, 12, 99

E
effect, 18, 61, 64, 68, 70, 72, 73, 74, 75, 76, 77, 81, 82
Element, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21,

22, 23, 26, 30, 36, 38, 39, 52, 59, 64, 65, 66, 91, 96, 99
enumeration, 5, 6, 8, 20, 21, 25, 27, 31, 32, 45, 46, 47, 57,

89, 98
Event, 68, 69, 73, 74, 75, 76, 77, 78, 79, 81, 82
Expression, 11, 20, 21, 23, 24, 26, 29, 30, 31, 68, 71, 73,

74, 79, 80, 81
extends, 8, 11, 12, 27, 29, 39, 52, 98
extension points, 43, 47, 52

F
facade, 11, 98
file, 50, 60, 98
FormalParameter, 11, 42, 47
framework, 66
friend, 8, 10, 11, 98

G
GeneralizableElement, 10, 11, 34, 36, 39, 48, 49
Generalization, 8, 10, 18, 30, 35, 36, 39, 40, 41, 48, 50, 59,

79, 96, 98, 99, 100
global, 91, 99

I
implements, 56
implicit, 3, 8, 11, 12, 27, 41, 51, 74, 83, 87, 99
import, 2, 8, 10, 11, 12, 98

102 UML v 1.0, Semantics

incomplete, 6, 11, 28, 41, 49, 71, 96, 99
inheritance, 18, 35, 36, 41, 46, 50
Instance, 25, 26, 28, 29, 30, 31, 32, 33, 47, 48, 50, 51, 61,

64, 66, 68, 69, 70, 74, 75, 79, 80, 82, 84, 85, 86, 87, 88,
89, 90, 91, 99

instance of, 26, 28, 29, 30, 31, 33, 35, 36, 37, 38, 46, 49,
50, 51, 52, 53, 57, 59, 64, 66, 69, 70, 76, 78, 79, 80, 81,
82, 85, 86, 87, 88, 89, 90

instances, 6, 7, 8, 9, 10, 11, 15, 16, 17, 18, 21, 23, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60,
62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95,
96

Interaction, 51, 65, 80, 84, 85, 86, 87, 88, 89, 90, 91
interaction diagram, 96
interface, 3, 27, 31, 32, 38, 46, 48, 50, 54, 58, 98
internal transition, 67, 69, 72, 76, 78
interval, 21
invariant, 53, 99
invocation, 51, 67, 69, 73, 74, 75, 77, 88
iteration_clause, 88

L
library, 60, 98
Link, 18, 31, 39, 85, 86, 87, 90, 91
link instance, 85
link roles, 85, 87
LinkRole, 31, 39, 85, 87, 88, 89, 90, 91, 92, 99, 100
links, 85
List, 11, 20, 21, 75, 96
local, 91, 99
location, 57, 60, 99

M
Member, 30, 42, 43, 45, 46, 47, 49, 50, 58, 65, 95
Members, 11, 43, 44, 46, 47, 49, 56
Message, 31, 50, 85, 87, 88, 89, 90, 91, 92, 99, 100
messages, 85, 87, 89, 91, 92, 93, 94
metaclass, 52, 98
Method, 46, 50, 55, 56, 58, 59, 66
Model, 4, 5, 6, 7, 9, 10, 11, 95, 96
ModelElement, 4, 7, 10, 13, 14, 15, 16, 17, 18, 22, 25, 26,

27, 28, 29, 35, 36, 37, 38, 39, 43, 44, 45, 47, 50, 55, 57,
58, 60, 61, 62, 63, 64, 68, 70, 71, 73, 74, 79, 80, 85, 86,
87, 88, 90, 94, 95, 96, 99

Multiplicity, 11, 20, 21, 26

N
Name, 4, 5, 6, 10, 11, 12, 14, 15, 16, 19, 21, 22, 26, 29, 31,

32, 36, 37, 39, 40, 43, 45, 46, 47, 49, 52, 53, 57, 59, 60,
63, 71, 72, 73, 74, 79, 81, 85, 86, 87, 88, 89, 90, 91, 95,
96, 97, 99

Nested, 11, 43, 44, 47, 48
Node, 25, 27, 29, 30, 39, 55, 56, 57, 58, 59, 60, 65, 81, 99
non_negative_integer, 21

Note, 10, 11, 13, 14, 16, 18, 19, 30, 50, 61, 64, 66, 73, 74,
79, 80, 83, 90, 96, 98

notes, 62, 64, 83
number, 2, 6, 21, 26, 28, 31, 37, 47, 75, 80, 87, 88, 90, 96

O
object, 2, 25, 33, 94
ObjectDiagram, 94, 96
occurrence, 30, 45, 68, 69, 70, 73, 74, 75, 81, 82
Operation, 31, 43, 46, 47, 49, 50, 51, 53, 55, 56, 57, 58,

59, 61, 64, 66, 68, 72, 74, 75, 79, 80, 82, 90, 91, 99
or, 41
ordered, 20, 21, 36, 37, 41, 47, 75, 87
overlapping, 22, 40, 41, 91, 100
Owns, 5, 7, 11

P
Package, 5, 7, 8, 9, 10, 11, 12, 18, 22, 35, 36, 38, 63, 95,

98
page, 60, 98
Parameter, 31, 43, 44, 45, 47, 48, 50, 51, 62, 63, 64, 92
participates, 35, 37, 38, 39, 40, 48, 49, 73
pattern, 66
persistence, 32, 33, 49, 99
player, 86, 88
postcondition, 53, 99
powertype, 35, 36, 39, 40, 98
precondition, 53, 99
PrimitiveType, 25, 27, 29, 30, 31, 98
process, 60, 96, 97, 98
projection, 5, 6, 7, 10, 11, 18, 94, 95, 96
property, 18, 19, 32, 33
Pseudostate, 68, 69, 72, 75, 76, 78, 79

Q
qualification, 22, 48, 86, 87
qualified_name, 22
qualified_sequence, 88
qualifier, 35, 38

R
recurrence_string, 88
References, 5, 6, 7, 11, 26, 27, 70, 74
refinement, 27, 31, 32, 48, 50, 58, 59, 66, 98
Relationship, 8, 9, 10, 14, 16, 18, 31, 35, 36, 37, 39, 56,

57, 58, 59, 62, 63, 64, 68, 71, 79, 81, 85, 87, 90, 91
relationships, 5, 6, 10, 11, 14, 15, 16, 17, 18, 24, 25, 30,

34, 35, 36, 39, 40, 41, 43, 48, 49, 50, 56, 59, 62, 64, 66,
68, 79, 80, 82, 85, 90, 93, 94, 95, 96

represents, 6, 16, 25, 27, 28, 30, 38, 39, 40, 44, 45, 46, 48,
50, 52, 57, 58, 62, 63, 64, 65, 70, 71, 72, 73, 75, 76, 81,
88, 89, 90, 91, 94

requirement, 19, 98
Responsibility, 25, 26, 30, 47
role, 28, 30, 34, 35, 37, 38, 40, 41, 48, 49, 85, 86, 87, 91,

92, 98

UML v 1.0, Semantics 103

role instance, 30, 86, 87
roles, 26, 28, 30, 31, 35, 37, 40, 48, 49, 51, 85, 87, 91

S
scenario, 33, 51, 66
self, 11, 49, 78, 82, 92, 100
semantics, 1, 2, 3, 8, 10, 11, 14, 15, 16, 17, 18, 23, 28, 29,

30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 46, 47, 48, 49, 50,
51, 52, 53, 55, 57, 58, 59, 61, 63, 64, 65, 66, 67, 72, 73,
75, 78, 79, 80, 81, 82, 84, 90, 95, 96, 97, 99

send, 45, 51, 52, 53, 98
sequence_string, 88
SequenceDiagram, 94
shared, 5, 6, 7, 9, 14, 15, 25, 26, 28, 29, 35, 38, 41, 43, 44,

45, 46, 56, 57, 58, 62, 64, 68, 69, 70, 74, 75, 86, 89, 95
Signal, 25, 26, 27, 29, 30, 31, 32, 39, 43, 45, 49, 50, 51,

58, 68, 69, 73, 74, 75, 79, 82, 91
SignalEvent, 68, 73, 74, 79
Signals, 11, 43, 44, 45, 47, 49
signature, 42, 43, 50, 54
simple name, 7, 22, 23
simple_name, 22
source, 4, 11, 12, 14, 16, 17, 18, 31, 39, 40, 48, 50, 51, 52,

53, 60, 66, 68, 70, 71, 72, 73, 75, 76, 77, 78, 79
space semantics, 53, 99
State, 1, 25, 26, 29, 30, 68, 69, 70, 72, 73, 75, 76, 77, 78,

79, 81, 94
state instance, 26, 28, 29, 30, 31
state variable, 70, 72, 82
StateDiagram, 81, 94, 96
StateMachine, 30, 50, 51, 59, 65, 68, 71, 72, 73, 75, 76, 77,

78, 79, 80, 81, 82, 90
StateVertex, 68, 71, 72, 73, 76, 81, 82
Stereotype, 5, 9, 10, 11, 14, 15, 17, 18, 30, 35, 36, 38, 50,

65, 66, 80, 90, 95, 96
String, 12, 21, 22, 33, 88, 99
subclass, 26, 40, 45, 98
subordinate, 6, 9
substate, 70, 73, 76, 78
subtype, 5, 7, 9, 10, 11, 14, 15, 16, 17, 18, 21, 25, 26, 27,

28, 29, 30, 35, 36, 37, 38, 39, 40, 43, 44, 45, 46, 47, 49,
50, 56, 57, 58, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74,
79, 80, 81, 82, 85, 86, 87, 88, 94, 95, 96, 98

supplier, 27, 31, 32, 33
synch_string, 88
System, 5, 9, 10, 11, 17, 18, 95, 97

T
table, 60, 98

TaggedValue, 10, 11, 14, 15, 16, 17, 18, 25, 26, 29, 30, 50,
66, 80, 90, 91, 96

tagset, 14, 16
target, 4, 11, 12, 14, 16, 17, 18, 31, 39, 40, 47, 48, 51, 52,

53, 66, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82
template argument, 44, 45, 52
template parameter, 44, 45, 46, 52, 62, 63
thread, 59, 60, 86, 88, 89, 90, 98
thread_name, 88
Time, 21, 22, 23, 53, 69, 73, 79
time semantics, 53, 99
TimeEvent, 68, 74
TimeExpression, 11, 23, 68, 73, 74, 75, 80, 81
trace, 6, 9, 10, 12, 47, 96, 98
Transition, 18, 39, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78,

79, 81, 82, 83, 96
transitions, 69, 70, 72, 78
trigger, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82
Type, 2, 10, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36,

37, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
56, 57, 58, 59, 62, 63, 64, 65, 66, 79, 80, 82, 90, 91, 97,
98, 99

type_name, 48
TypeExpression, 11, 23, 25, 26, 27, 29, 30, 45
types, 16, 20, 25, 26, 31, 32, 39, 42, 43, 44, 48, 52, 54, 62,

64, 68, 80, 84, 93, 96

U
Uninterpreted, 11, 14, 15, 16, 17, 21, 22, 27, 28, 45, 53,

56, 89, 95, 96, 99
use cases, 39, 40, 94
UseCase, 10, 25, 27, 28, 30, 39, 47, 51, 52, 65
UseCaseDiagram, 94
uses, 2, 18, 29, 40, 50, 54, 98
utility, 53, 99

V
Value, 12, 25, 28, 30, 31, 32, 39, 43, 44, 45, 48, 50, 53, 60,

62, 63, 64, 85, 87, 90, 91, 99
values, 1, 2, 6, 14, 15, 19, 20, 21, 22, 26, 28, 30, 31, 32,

44, 53, 62, 63, 83, 86, 87, 91, 92, 97, 99
vertices, 70, 71, 72, 73, 81, 94, 95
ViewElement, 5, 7, 10, 39, 80, 90, 94, 95, 96
Visibility, 5, 8, 11, 43, 49
vote, 92, 100

