e neering
=]

; o

N O

a

=

(‘ s -
L ~

(Onto) Logical Requirements
and Designs

Conrad Bock
U.S. National Institute of Standards and Technology

Raphael Barbau
Engisis

NIST

Motienal Institute of Standards and Technology

Overview

RoadMap

Motivation

— Behavior, review

— Requirements and designs, requirements
Requirements and designs, Solution
1. Satisfaction, derivation, and refinement
2. Operation and effect

Summary

Overview

RoadMap

Motivation

— Behavior, review

— Requirements and designs, requirements
Requirements and designs, Solution
1. Satisfaction, derivation, and refinement
2. Operation and effect

Summary

Behavior as Composite Structure

Onto Requirements and Designs
(this one)

Onto 4D
(ad/19-09-07)

Onto Activities
(ad/19-06-02)

Onto State Machines, Parts 1 & 2
(ad/18-12-09, 19-03-02)

Onto OO
(ad/18-09-07)

Onto Interactions
(ad/18-06-11)

Onto Behavior Basics
(ad/2018-03-02)

Overview

RoadMap

Motivation

— Behavior, review

— Requirements and designs, requirements
Requirements and designs, Solution
1. Satisfaction, derivation, and refinement
2. Operation and effect

Summary

Original Problem

= UML has three behavior diagrams.
— Activity, state, interaction.
= Very little integration or reuse between
them.
— Three underlying metamodels.
— Three representations of temporal order.

= Triples the effort of learning UML and
building analysis tools for It.

General Solution

= Treat behaviors as assemblies of
other behaviors.

— Like objects are assemblies of other
objects.

= Assembly = UML internal structure
— Pleces represented by properties.
— Put together by connectors.

= Put all behavior diagrams on the
same underlying behavior assembly
model.

Behaviors as Composite Structure

act PreventLockup [Activity Diagram])

Property

Property | ™~ __ _ __

\9 : o ke
— _TraiLusi — dl:Tractfj m1:Brake
Detectr Modulator
j
Connector - m

detTrkLos()

sd ABS_ActivafonSequence [Sequence Diagram])

Activity I<:|
P r O p e rty \ sendSignal()

modBrkFrc(traction_signal:boolean)g
stm TireTractic)\[State Diagram]|) >

modBrkFrc()

\1, (—LossOfTractionﬂl
sendAck()
Gripping] [Slipping] <

LRegainTraction—) Interaction
i/

Connector / State Machine Connector

-

Behavior as Timing Constraints

4 . N
TakePicture

Model
. J

| Happens before
Things Behavior — - Ve
Being Focus T |—|(S ,,,, i
Modeled Shoot T §\ — ,£ —
(MO) Take Picture + | S 8 l /’l l

\‘\ /")
Happens during Time

= Behaviors model “things” happening over time.
— With temporal relations (time constraints) between them.

Behavior as Timing Constraints

4 . N
TakePicture

Model
Things Behavior
zeing ocus il am
Modeled Shoot T (‘ — —)
(MO) Take Picture + | : | :
>
Time

= The TakePicture occurrence on the right does

not follow the behavior model.

10

Behavior as “Composite Timing”

(])
Part-whole ._| TakePicture Part-part
Model N /

Things Behavior 7 Part—Bart
Being Focus T I_Ik """ I_I/'/
Modeled Shoot T é\ — ,4 —
(MO) Take Picture 4 f—— : // : :
\\ //)
Part-whole fime

= Composite structure relations are temporal:
— Part-whole = happens during.

11
— Part-part = happens before.

Behavior as “Composite Timing”

Model class TakePicture J stepl
(M1) > Focus
—>| stepl: Focus

Property/ zmensBefore

(whole-part) _——>>|: HappensBefore
step2
Connector step2 : Shoot <> Shoot
(part-part)
Things Not instance specs
Being TakingPic1l: TakingPic2:
Modeled
(MO)
stepl | :Happens _|step2 stepl | :Happens _|Step2
Focusing | Before | Shooting Focusing | Before | shooting

DuringTP1: /t\ DuringTP1:| |DuringTP2: /I\ DuringTP2:

Focusing before shooting in same taking picture *

Model and Things Being Modeled

(TakePicture
Model
_ ¢ /=\)
Things Behavior ',: '\‘
Being Focus T b— o B
Modeled Shoot + Q g|_| :"’ \‘ Q‘sl_l
(MO) Take Picture + | }' \. |
>
Time

= Dashed arrows between M1 and MO
mean 13

MO - M1 Synonyms

rTakePictu re

Classified by e w

Modeled by ~ A
Specified by | ™
Th?ngs Behavior 1 - :: ‘.‘ L
Conforms to 2on9 Al g Gy / gg,_l
(MO) R (\
FOIIOWS ake Picture | | | 5
Time

Satisfies (logically)

Not quite: Instance of (in the OO sense)
Not at all : Execution of (in the software sens®)

Behavior: What’s Being Modeled?

Real,

Simulated, Focus

or Desired 3/15/09 10-11pmET :
Things Being ———

akePicture
Modeled (MO) 3/15/09 10-12pmET :
Shoot
Not instance 3/15/0911-12pmET :

specs.

= “Things” that occur in time
— Eg, taking a picture, focusing, etc.
— Not “behaviors”, “actions”, etc.

15

Behavior: What’'s in Common?

Standard .
Model Library § "appens Behavior happens
Before Occurrence During-t
o A
| 1
| I
| |
I happens
BN Focus
Things Being TakePicture 3/15/09 10-11pmET :
Modeled (MO) 3/15/09 10-12pmET : happe”SBefore\l,
> Shoot
happens| 3/15/0911-12pmET :

During-!

* They happen before or during each

other.
— Construct M1 library for this.
— Use it to classify things being modeled.

Behavior: Use Library

Standard .
Model Librar happens Behavior happens
y Before Occurrence During
(M1) A A
{subsets}
System TakePicture
Model < : HappensBefore
(M1) stepl: Focus >|step2: Shoot
>
“ A\ //
| /
| |
|
b — 1} Focus
Things Being kePicture N ! 3/15/09812-11meT:
Modeled (MO) 3/15/09 10-12pmET : AN - apReEls eore\l,
step
Shoot
3/15/0911-12pmET :

= Specialize library classes and
subset/redefine library properties.

Behavior: Too repetitive at M1?

type
l \l/‘ype Association él gwnedt
d onnector
Metamodel Property role
(M2) Class ‘_ZP Property ? Connector
{redefines}
4 ownedStep 4 fromStep 4
Behavior ; Step Succession
- toStep
A - A
1 / "
System J/ TakePicture
Model L : HappensBefore 7
stepl: Focus “>istep2: Shoot
(M1)
7
A ~
: I
: : \ stepl
Things Being v > 3/15/09F(1)ocijlS ET
\ -11pm .
Modeled (MO) TakePicture AR HappensBefore\l/
3/15/09 10-12pmET : Nten2
step
> Shoot
3/15/0911-12pmET :

= Capture M1 patterns in M2 elements.
— Tools apply patterns automatically.

8

Benefits: Original Problem

= Flexibility in using metamodels

— Add metaelements as needed to simplify
library usage.

= Many metaelements become synonyms

— Application / method / diagram-specific
terminology sharing same semantics.

— M2 actions, states, etc, => M1 happensDuring
= Learning UML and building analysis tools
for It Is easler

— Due to shared semantics for variety of
modeling language terminology.

Benefits: Expressiveness

Model Focus |Q— MultiFocus
(M1) rTakePicture) TakeSpecialPicture
<]— Multi
o oo 1o
A v‘~\ /?\
I = Sso i
Behavior |, ____. T W R S— X
] 1] 1
Things Log —
Being Shoot (7|—| — —
Modeled Focus — g\
“~HappensBefore
(MO) MultiFocus (\ — PP
\\
Take Picture | | —x |} l
\‘\\ .)
HappensDuring Time

= Constraints are inherited in UML
— Including temporal constraints.

20

Benefits: Expressiveness

Event \

fTakePicture \I)

button
Press
Focus] Shoot O
: Exposure ,\ : Exposure
\ _J

\ Object flow

= Combine activity and state machines.

— States and actions happen during their
“containing” occurrences, ordered in time,,

Benefits: Modeled Semantics

= UML semantics Is written in free text

— Specifying an execution procedure for
activities and state machines:

Tokens are offered to an ActivityEdge by the source ActivityNode of the edge. Offers propagate through ActivityEdges
and ControlNodes, according to the rules associated with ActivityEdges (see below) and each kind of ControlNode (see
sub clause 15.3) until they reach an ObjectNode (for object tokens) or an ExecutableNode (for control tokens and some
object tokens as specified by modelers, see ObjectNodes in sub clause 15.4). Each kind of ObjectNode (see sub clause

15.4) an
accepte,
Activity]
which a

The processing of Event occurrences by a StateMachine execution conforms to the general semantics defined in Clause
13. Upon creation, a StateMachine will perform its initialization during which it executes an initial compound transition
prompted by the creation, after which it enters a wait point. In case of StateMachine Behaviors, a wait point is
represented by a stable state configuration. It remains thus until an Event stored in its event pool is dispatched, This
Event is evaluated and, if it matches a valid Trigger of the StateMachine and there is at least one enabled Transition that
can be triggered by that Event occurrence, a single StateMachine szep is executed. A step involves executing a
compound transition and terminating on a stable state configuration (i.e., the next wait point). This cycle then repeats
until either the StateMachine completes its Behavior or until it is asynchronously terminated by some external agent.

—and trace classification In interactions:

Clause 13, Common Behaviors, describes the general semantics of the execution of Behaviors. Interactions are kinds of
Behaviors that model emergent behaviors, as defined in sub clause 13.1. As discussed in sub clause 13.2.3, the
execution of a Behavior results in an execution trace. Such a trace is a sequence of event occurrences, which, in this
clause. will be denoted <el, e2. en>. Each event occurrence may also include information about the values of all
relevant objects at the point of time of its occurrence.

The semantics of an Interaction are expressed in terms of a pair [P, I], where P is the set of valid traces and 1 is the set of
invalid traces. P ! I need not be the whole universe of traces. Two Interactions are equivalent if their pairs of trace-sets
are equal. The semantics of each construct of an Interaction (such as the various kinds of CombinedFragments) are

-

= Mod

el In standard libraries.

22

Benefits: Classification Semantics

= Standard execution models for UML umL, etc)
— Procedures that create a behavior occurrence
e« Conforming to a UML model.

— Don’t tell whether
 An existing behavior occurrence conforms.
e Tools are producing correct occurrences

= Classification does the opposite
— Tells whether an existing behavior occurrence
conforms to a model.

— Doesn’t say how to create an occurrence.
 Execution engines and reasoners do this.

— Enables semantic conformance testing. 2

Overview

RoadMap

Motivation

— Behavior, review

— Requirements and designs, requirements
Requirements and designs, Solution
1. Satisfaction, derivation, and refinement
2. Operation and effect

Summary

24

SysML background

= Solicited feedback from requirement
engineers.

— They couldn’t agree.

= Only the most widely used capabillities
supported in SysML.

= SysML (mostly) and this deck about
functional requirements
— Functional = during operation.

— Non-functional, eg, cost, manufacturing
speed, etc.

25

Requirements and Designs

«requirement» _
Transportation Safety |¢ _ _ _«satisfy» | «block»
“Less than 10 deaths per Vehicle
100 million km / yr.” A
. A
«deriveReqt» : «refine»
1
«requirement» _
Stopping Distance . _ _ «satisfy» | «block».
“Less than half the vehicle Small Vehicle
length per 10 km/h.” A
«deriveReqt» | «refine»
1
«requirement»
Traction < «satisfy» «block»
“Slip no more than 1% of Dry Land Vehicle
any meter travelled.” A
«deriveReqt» | «refine»
1

«requirement» «satisfy» «block» «block»
Wheel Rotation on Curves K& = = == = Car Wheel
“Slip no more than 1% per rotation.”

= Requirements “rolldown”
— Derived alongside design specialization.”

Onto: What's Being Modeled?

g Operating

Device
conforming to

- Environment =~ ~ "\ Design 1
&)
+ ’,
) : _
> Device Device
V) < (machine, < = = =|= = = conforming to
— System) DeS|gn 2
© .
S
Devi

|_ e o - confoer\r/r:isg to

Design 3

Requirements are \ v J

about the environment Alternative Designs

= Requirements specify (constrain) objects around

a (hypothetical) device during its operation.
— They do not specify / constrain the device. 27

Zave, P., Jackson, M., “Four Dark Corners of Requirements Engineering.” ACM Transactions on Software Engineering and Methodology 6 (1): 1-30, 1997.

Lawn Mowing Requirements

Operating
Environment

3
o

o
D =
._ms

N
L
c
- e)
3 O
D S
X &

bout device)

(nothing a

28

Operating Environment

= Requirements specify:
— Effects of a (future) device ...
— ... when it is operated properly.
= Effects don’t matter when device is
operated improperly.
— They could be the right ones or not.

29

Proper Operation Spec’d By

= Customers, for all (future) designs
— Eg, easy to use.
— Limits designers.

= Designers, for their particular design
— Eg, operating manuals / trainings.
— Limits operators.
— Operation differs by kind of device (design)

e But is still only about environment, not device.
 Not designs (could apply to multiple designs).

30

Operation and Effect

_ — = > Some op constraints

PR apply to all designs
// Some apply only r A \
Operating for some designs _
' - Device
EnV|r0nment ‘-_\ ~< conforming to
- Design 1
~ \E "
I
s \:' \ (Device
. vy conforming to
\\ < Design 2
\ \~
\ (,
Device
\< conforming to
Design 3
\~
\)
Y

Alternative Designs

= Want devices that produce the desired
effects when operated properly.

31

Requirements & Designs
Requirements

1. Logical interpretation for
requirement satisfaction/derivation

and design refinement.

2. Treat requirements as specifying
operational environment behavior

— Operation
— Effect

32

Overview

= Requirements and designs, Solution
1. Satisfaction, derivation, and refinement

33

Generalization? (M1)

«requirement» _
Transportation Safety 4 «satisfy» «block>
“Less than 10 deaths per Vehicle
100 million km / yr.” A
«deriveReqt» A «refine»
«requirement» _
System Stopping Distance 4 «satisfy» «block»
Model “Less than half the vehicle Small Vehicle
length per 10 km/h.”
(M1) = JAY |
«refine»

«deriveReqt»

«requirement» _
Traction K «satisfy» «block»
“Slip no more than 1% of Dry Land Vehicle
any meter travelled.” A

«deriveReqt» A «refine»

«requi.rement» «satisfv» «block» «block»
tepotononcuves [H "G [e
= Designs obey constraints of requirements.

= Derived requirements obey general ones.
= Refined designs obey general ones.

34

Generalization? (M2)

~—

Class
Logical o
< general specific
language 1\ 1\
Metamodel |7> Generalization
(M2) A o
SysML { Requirement || DeriveRqt || Satisfy || Refine Block
A A A R A
! | : | |
«requirement» l l [:
Transporting Safety | | I «block»
SyStem “Less than .001 deaths per 4 I «satisfy» I Vehicle
Model 10 thousand km / yr.” I | A
(M1) - JaN - - '---
«deriveReqgt»ep3 = ==----...... - == «refine»
«requirement» «block»
Stopping Quickly _ Small
“Less than half the vehicle «satisfy» Vehicle
length per 10 km/h.”

* Engineers use SysML layer of M2
= Reasoners use logical layer

35

Objects aren’t Behaviors

«requirement» isf
Transportation Safety | «satisty» «block>
“Less than 10 deaths per Vehicle
100 million km / yr.” A
«deriveReqt» A «refine»
«requirement» .
«satisfy» «block»

Stopping Distance 4
“Less than half the vehicle
length per 10 km/h.”

Behaviors <)—®7 Objects

= Behaviors don’t generalize objects.

— Need same kinds of things on both ends
of requirement satisfaction. 36

Small Vehicle

Total Systems

happens happens
During __>|7& Occurrence < Before
Model
(M1) Behavior i”"o"’e§
Occurrence |* A i
Standard ©
Model Library ZI& _ Object
devicel occurrence
Total System | L7
Occurrence opEnvODbj
)

= Behaviors involve objects.

= Total systems involve devices and
objects in their environment.

37

Reqg/Des as Total Systems (M1)

Standard Total System deViC; Object
Model Library Occurrence |[* S Occurrence
JAN 3 JAN
Model _ 2
(M 1) «requirement» g «design» devi
Transporting Safety | 4% Operatin S| «block»
“Less than .001 deaths per \Behicleg * 1| Vehicle
10 thousand km / yr.” {r} A
SyStem «deriveReqt» JA) 5 «refine»
Model) Iz
«requiremenF» g «design» device|l «block»
Stopping Quickly e = Operating >| Small
“Less than half the vehicle Small Vehicle * 11 Vehicle
g length per 10 km/h.”
\) \)

\
Requirements do not Designs do

restrict (specify) devices

= Total systems enables generalization to be
used for requirement satisfaction.

Reqg/Des as Total Systems (M2)

|73 Behavior
Metamodel 3 v JAN
(M2) Class <
Logical | =
language < genera/I\ /I\spem ic
Generalization

* A S

SysML+{ Requirement || DeriveRqgt Satisfy || Refine Design Block

A A A A) A
1 1 1
[
I I I - I
- - | -
Model «requwfament» : | «design» | - device I
M1 Transporting Safe 'y <H—| Operating! «block>
() “Less than .001 deaths f_r a Vehicle ' | 1| Vehicle
10 thousand km / yr.”: "@ | {r
o |
System < «deriveReqt» % - g «refine>$ - -
MOdeI «req.uiremen.t» é <design» device [<blocks
Stopping Quickly t. @1 Operating }——>] Small
“Less than half the vehicle g Small Vehicle | 1| Vehicle
length per 10 km/h.” M
-

39

Example Using Generalization (M1)

device
Standard Total System |* {r}A 1.*| Object
Model Library Occurrence opEnvODbj| Occurrence
* TR
@ {r h
System 4
model PictureTaking
. result .
Requ”e.< result : Picture hb due: — Picture
ment target : Location Dipmlegns Occurrence target : Location
A\ produces
4 {subsets happensBefore}
Model
(I\/Il) PictureTakingD1
Aresult @ Picture [€— Adue : Camera
_ : “happens Occurrence pp - -
| target - Location | pyring S| pointedAt : Location
. produces
Initial 4
design pp : Camera
«state» 1 Operati ng «state»
takingPicture : Camera takingPicture

| ApointedAt : Location

40

~—
~
System PictureTakingD1 Camera |[@@®—
model e edAL L : «state»
pointedAt : Location owered
Aresult : Picture [€&——— “~due: pg < P A
target : Location Dh?'lonIoens oeeurrence “_
| uring «state»
. produces warm
Initial <
design pp : Camera ”—
ki «s}:)a_te;) 1 4 g
akingPicture : . «state»
Model ApointedAt : Location Operating € takingPicture
|
\ 4 (M 1) Camera
- V
_ 4 DeviceOnPlatform
Aresult : Picture €& Ndue : I tf«StateR»] wop
A ~platformReady :
Targel - Location DE?Pn%enS Occurrence Y y S| Heater
c o ~produces happe_nsA
o P While «state»
= operating
0 . .
g A App : Camera S{jppgftg fIpr : Platform
fix
-c;'< structure orientation : 3DAngle P Platform
b) «state» 1 . .
= takingPicture : _ states orientation : 3DAngle
= turning : Platform : «state»
Ccllﬁ) | ApointedAt : Location turning
L‘ ats wpp : Heater { fixpp.orientation = fixppO(
«state» states < -1 pp.takingPicture.pointedAt) }
~warm : ST— : operating : Heater «state»
] platform 41

Example Using Generalization (M2)

Behavior

AN
Metamodel r €7

(M2) Logical a5
I ifi
Ianguage< genera/I\ /I\spem ic

Generalization

* A S

SysML + Requirement || Satisfy || DeriveRqgt | | Refine Design
A A A A
- |

: I I :
PictureTaking 4_ PictureTakingD1 4_ - PictureTakingD2

m -
SySte result : Picture f due: ~result : Picture rdue - (resuh Picture ~due ~staton
- appens N _ .
target : Location Dueipng Occurrence Target - Location Dlllér‘;)npgens Occurrence - |m E)TA?\?WDQEHS Occurrence platformReady :
M O d el A\produces ~produces hapvr\)lﬁﬂz/

Cd

: Camera - -
(M 1) - pp N ~pp : Camera sypports Txpp - Platiorm
_«state» 1 strueture -~ orientation : 3DAngle
takingPicture : «state» 1 g
~pointedAt : Location takingPicture turning : Platform
“pointedAt : Location

heats

wpp : Heater

«state» states
~warm : < operating : Heater
happens
While

42

Generalization? Not guite.

1. Design can restrict operation
regquirement

— Design could work in limited operation
cases and still be a specialization.

2. Design will always satisfy effect
regquirement

— Design occurrences that don’t have
desired are excluded by generalization.

43

1) Design Restricting Operations

-~ .
PictureTaking _— Anytime
Reguirement < result : Picture |€&——— due: 4‘
d target : Location .g%r?ir;legns Occurrence .
- *}‘; __-Any location
-
I(\I/\I/Iol(:;el RestrictedPictureTaking Only on
Aresult ; Picture [€—— TueSdayS
_ ~happens | due: Tuesday
target : Location During
Initial o Aproduces
nitia
design) i op - Camera IOnlyt_desert
S— / ocations
takingPicture :
- pointedAt : Desert{ /
-

= Specializations are usually narrower.
— =subsets of PictureTaking occurrences.#

2) Effects Always Satisfied

Requirement <

Model
(M1)

Initial
design

= Specia

—~ _ _
PictureTaking
result : Picture hh due :
target : Location D?Eipr%m Occurrence
- I
~ - _ _
PictureTakingSometimes
Aresult : Picture [€—— due: Mlgthtr pI’OdUCe
target : Location DZE?Pn%enS Occurrence | LA~ picture
o O..1Aproduces€ — Mlght ke
e ~ picture
«state» (..1 _/
takingPicture : %
I"pointedAt . Location
-

Izations might loosen effects

— But still subsets PictureTaking occurrencés.

Syntactic Solutions? Not quite.

1. UML::isFinal =true on operation
elements prevents narrowing type/mult
— Doesn’t prevent restrictions due to
e Bindings (eg, to camera target).
* Interactions among design elements.
2. UML redefinition doesn’t allow loosening
type/mult (on effect elements)
— Doesn’t prevent loosening due to

e Decision nodes / states, alt fragments.
 Interactions among design elements.

46

Overview

RoadMap

Motivation

— Behavior, review

— Requirements and designs, requirements
Requirements and designs, Solution
1. Satisfaction, derivation, and refinement
2. Operation and effect

Summary

47

Separate Operation And Effect

Standard Total System
Model Library Occurrence

ZF

—
System PictureTakingMaybe
model 0.1
. Pi 0.1 |l&€&— due: 0.1
Model result : Picture
(Ml) target : Location [0..1] g?ﬁﬁ]egns Occurrence
o D 2
S PictureTakingOperation PictureTakingEffect
= 0.1 1
D < result : Picture 0. 1j€——— due: 1 result : Picturessgy 1 [€——— due: 0.1
CST target - L ocation [1] B?J[?ﬁ]egns Occurrence } target : I—OO% Bi$ﬁ%ns Occurrence
g L)
* kMust have due period \ isti
: P Must have result existing
and location during the due period

= Distinguished which parts of
requirement are mandatory. 48

All Operations of Device

Standard Total System deViC; Object
Model Library Occurrence [+ A 15| Occurrence
{r}
- JA\ JAN
System o -
model S PictureTakingOperation
& 0..1
L=< result : Picture 0--1}€ due: 1
g target : Location [1] Bi?i%egns Occurrence
i A
Model - _ . .
M1 PictureTakingOperationWithCamera
() { isSufficient = true } device
0.1 >| Camera
result : Picture 0.1 &—— due: 1 1
_) happens Occurrence
target : Location [1] | pyring

= All total system occurrences satisfying

operation requirements on using dewce
— Anytime, any location.

... Have Desired Effects ...

Standard Total System
Model Library Occurrence
—
System A A
model _
o PictureTakingOperation PictureTakingEffect
— U
S5 e 0..1 1
\/ 8m’< result : Picture 0.1 s due: 1 result : Picture 1€ due: 0.1
n'd = target : Location [1] D:apr)ip?%ns Oceurrence target : Location B‘aﬁ)ﬁ%ns Occurrence
‘ s 4
Model PictureTakingOperationWithCamera
(M 1) { isSufficient = true }
0.1
result : Picture 0..1j€&———— due: 1
:) . happens Occurrence
arget : Location [1] During

50

... And Conform to Design

Standard Total System deViC; Object
Model Library Occurrence |« A 15| Occurrence
T L
; 7 ~
System PictureTakingMaybe
model
_ 0.1 Camera
result : Picture 0..1}&—— due: 0.1
target : Location [0..1] B?ﬁﬁ]egns Occurrence _ pp
M A A oY
Model ; -
(I\/I 1) PictureTaking PictureTaking PictureTakingD1
Operation Effect Aresult : Picture € “due:
_ . “happens | Occurrence
A A target : Location During
B produces

pp : Camera

PictureTakingOperation _
WithCamera D «state» 1
{ isSufficient = true } takingPicture :

ApointedAt : Location

Reqg Satisfaction Pattern (M1)

Standard
Model Library

Model -
(M1)

System <
Model

Total System devicel Opject
Occurrence * Tl,_* Occurrence
{r}
«EffectReg» «OperationReg» «design» device| «block»
Desired Proper Operating D [51 (Cool)D
Effect Operation \

Z}

4&

«DeviceOperation»

Proper D Operation
{ isSufficient = true }

1]‘devce

= Stereotypes indicate possible M2
~TBD

52

1BD

= Easier requirement satisfaction
modeling

— M2
— Anything simpler for M1?
= Finding requirement violations

— Tests
— Search

56

Overview

RoadMap

Motivation

— Behavior, review

— Requirements and designs, requirements
Requirements and designs, Solution
1. Satisfaction, derivation, and refinement
2. Operation and effect

Summary

57

Summary

= Requirements specify operating
environment of device only
— Operation and effect.

= Designs specify device only
— Internals and relation to environment.

= Treat requirements and designs as
behavior occurrences

— of operating environment and device together
(total system).

58

Summary

= Requirement satisfaction is not

generalization. Design

— Must produce desired effects whenever
operated properly.

— Can’t narrow operations.

— Can’t loosen effects.

= Generalize all operations of a kind of
device (sufficient) by
— Proper operation

— Desired effect

— Design of the same kind of device (as
total system behavior).

59

Past ADTF Intro Slides

Intro to Behavior as Composite Structure
— http://doc.omg.org/ad/2018-03-02

Interactions: nttp://doc.omq.org/ad/18-06-11

Object-orientation: http://doc.omg.org/ad/18-09-07

State Machines, parts 1&2:

— http://doc.omqg.org/ad/18-12-09
— http://doc.omqg.org/ad/19-03-02

Activities, part 2: http://doc.omg.org/ad/19-06-02
4D: http://doc.omg.org/ad/19-09-07

60

http://doc.omg.org/ad/2018-03-02
http://doc.omg.org/ad/18-06-11
http://doc.omg.org/ad/18-09-07
http://doc.omg.org/ad/18-12-09
http://doc.omg.org/ad/19-03-02
http://doc.omg.org/ad/19-06-02
http://doc.omg.org/ad/19-09-07

More Information

= Earlier slides (more onto)

— http://conradbock.org/bock-ontological-behavior-modeling-jpl-
slides.pdf

= Papers:
— Ontological Behavior Modeling:
http://dx.doi.org/10.5381/j0t.2011.10.1.a3

— Ontological Product Modeling:

https://tsapps.nist.qgov/publication/get pdf.cfm?pub id=
822748

— 4D Requirements Modeling:

https://tsapps.nist.qgov/publication/get pdf.cfim?pub id=
919164

= Application to BPMN:
http://conradbock.org/#BPDM

= SYysML2: Contact Bjorn Cole bjorn.f.cole@mco.com

61

http://conradbock.org/bock-ontological-behavior-modeling-jpl-slides.pdf
http://dx.doi.org/10.5381/jot.2011.10.1.a3
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=822748
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=919164
http://conradbock.org/#BPDM
mailto:bjorn.f.cole@lmco.com

	(Onto) Logical Requirements and Designs
	Overview
	Roadmap
	Behavior, Review
	Original Problem
	General Solution
	Behaviors as Composite Structure
	Behavior as Timing Constraints
	Behavior as Timing Constraints
	Behavior as “Composite Timing”
	Behavior as “Composite Timing”

	Model and Things Being Modeled
	M0  M1 Synonyms

	Onto Method
	Behavior: What’s Being Modeled?
	Behavior: What’s in Common?
	Behavior: Use Library
	Behavior: Too repetitive at M1?

	Benefits
	Original Problem
	Expressiveness
	Expressiveness
	Modeled Semantics
	Classification Semantics

	Requirements and Designs, Requirements
	SysML background
	Requirements and Designs
	Onto: What’s Being Modeled?
	Lawn Mowing Requirements
	Operating Environment
	Proper Operation Spec’d By
	Operation and Effect
	Requirements & Designs Requirements

	Requirements and Designs, Solution 1
	Generalization? (M1)
	Generalization? (M2)
	Objects aren’t Behaviors
	Total Systems
	Req/Des as Total Systems (M1)
	Req/Des as Total Systems (M2)
	Example Using Generalization
	Example Using Generalization (M1)
	Example Using Generalization (M1)
	Example Using Generalization (M2)

	Generalization? Not quite.
	1) Design Restricting Operations
	2) Effects Always Satisfied
	Syntactic Solutions? Not quite.

	Requirements and Designs, Solution 2
	Separate Operation And Effect
	All Operations of Device …
	… Have Desired Effects …
	… And Conform to Design
	Req Satisfaction Pattern (M1)

	TBD
	Summary
	Past ADTF Intro Slides
	More Information

