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Behavior as Composite Structure

4

Onto State Machines, Parts 1 & 2
(ad/18-12-09, 19-03-02)

Onto Behavior Basics
(ad/2018-03-02)

Onto Interactions
(ad/18-06-11)

Onto OO
(ad/18-09-07)

Onto Activities
(ad/19-06-02)

Onto 4D
(ad/19-09-07)

Onto Requirements and Designs
(this one)
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Original Problem
 UML has three behavior diagrams.

– Activity, state, interaction.
 Very little integration or reuse between 

them.
– Three underlying metamodels.
– Three representations of temporal order.

 Triples the effort of learning UML and 
building analysis tools for it.
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General Solution
 Treat behaviors as assemblies of 

other behaviors.
– Like objects are assemblies of other 

objects.
 Assembly = UML internal structure

– Pieces represented by properties.
– Put together by connectors.

 Put all behavior diagrams on the 
same underlying behavior assembly 
model.

7



stm TireTraction [State Diagram]

Gripping Slipping

LossOfTraction

RegainTraction

Behaviors as Composite Structure
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sd ABS_ActivationSequence [Sequence Diagram]

detTrkLos()

modBrkFrc()

sendSignal()

modBrkFrc(traction_signal:boolean)

sendAck()

d1:Traction
Detector

m1:Brake
Modulator

act PreventLockup [Activity Diagram]

Activity

State Machine

Interaction

Property

Connector

Property

Connector

Property

Connector
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Behavior as Timing Constraints

 Behaviors model “things” happening over time.
– With temporal relations (time constraints) between them.

Time

Shoot

Focus
Behavior

Take Picture

TakePicture

ShootFocus
Model
(M1)

Things
Being
Modeled
(M0)

Happens during

Happens before
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Behavior as Timing Constraints

 The TakePicture occurrence on the right does 
not follow the behavior model.

Time

Shoot

Focus
Behavior

Take Picture

TakePicture

ShootFocus
Model
(M1)

Things
Being
Modeled
(M0)
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Behavior as “Composite Timing”

 Composite structure relations are temporal:
– Part-whole = happens during.
– Part-part = happens before.

Time

Shoot

Focus
Behavior

Take Picture

TakePicture

ShootFocus
Model
(M1)

Things
Being
Modeled
(M0)

Part-whole

Part-part

Part-whole Part-part



Behavior as “Composite Timing”
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class TakePicture

step1: Focus

step2 : Shoot

: HappensBefore

Focusing before shooting in same taking picture

Model
(M1)

Things
Being
Modeled
(M0)

:Happens
Before

:Happens
Before

step2 step2step1step1

TakingPic2:

Focusing
DuringTP2:

Shooting
DuringTP2:

Shooting
DuringTP1:

TakingPic1:

Focusing
DuringTP1:

HappensBefore

step1
Focus

step2
Shoot

Property
(whole-part)

Connector
(part-part)

Not instance specs



Model and Things Being Modeled

 Dashed arrows between M1 and M0 
mean .... 13

Time

Shoot

Focus
Behavior

Take Picture

TakePicture

ShootFocus
Model
(M1)

Things
Being
Modeled
(M0)



M0  M1  Synonyms

Classified by
Modeled by
Specified by
Conforms to
Follows
Satisfies (logically)

Not quite: Instance of (in the OO sense)
Not at all : Execution of (in the software sense)14

Time

Shoot

Focus
Behavior

Take Picture

TakePicture

ShootFocus
Model
(M1)

Things
Being
Modeled
(M0)



Behavior: What’s Being Modeled?

 “Things” that occur in time
– Eg, taking a picture, focusing, etc.
– Not “behaviors”, “actions”, etc.

15

Focus
3/15/09 10-11pmET :

TakePicture
3/15/09 10-12pmET :

Real,
Simulated, 
or Desired

Things Being
Modeled (M0)

Shoot
3/15/0911-12pmET :Not instance

specs.



Behavior: What’s in Common?

 They happen before or during each 
other.
– Construct M1 library for this.
– Use it to classify things being modeled. 16

Things Being
Modeled (M0)

happens
During-1 Focus

3/15/09 10-11pmET :
TakePicture

3/15/09 10-12pmET :

Shoot
3/15/0911-12pmET :

happensBefore

Behavior
Occurrence

happens
During-1

happens
Before

Standard
Model Library

(M1)

happens
During-1



Behavior: Use Library

 Specialize library classes and 
subset/redefine library properties. 17

Things Being
Modeled (M0)

step1 Focus
3/15/09 10-11pmET :

TakePicture
3/15/09 10-12pmET :

Shoot
3/15/0911-12pmET :

HappensBefore

Behavior
Occurrence

happens
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happens
Before

Standard
Model Library

(M1)

System
Model

(M1)

step2

TakePicture

step1 : Focus step2 : Shoot
: HappensBefore

{subsets}



Behavior: Too repetitive at M1?

 Capture M1 patterns in M2 elements.
– Tools apply patterns automatically.
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Benefits: Original Problem
 Flexibility in using metamodels

– Add metaelements as needed to simplify 
library usage.

 Many metaelements become synonyms
– Application / method / diagram-specific 

terminology sharing same semantics.
– M2 actions, states, etc, => M1 happensDuring

 Learning UML and building analysis tools 
for it is easier
– Due to shared semantics for variety of 

modeling language terminology. 19
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Benefits: Expressiveness

 Constraints are inherited in UML
– including temporal constraints.

Time

Focus

TakePicture

Shoot

TakeSpecialPicture

Log
Behavior

Take Picture

MultiFocus

ShootFocus ShootMulti
Focus Log

Model
(M1)

Things
Being
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(M0)

MultiFocusFocus
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Benefits: Expressiveness

 Combine activity and state machines.
– States and actions happen during their 

“containing” occurrences, ordered in time.21

TakePicture

ShootFocus
button
Press

: Exposure

Event

Object flow

: Exposure



Benefits: Modeled Semantics
 UML semantics is written in free text

– Specifying an execution procedure for 
activities and state machines:

– and trace classification in interactions:

 Model in standard libraries. 22



Benefits: Classification Semantics
 Standard execution models for UML (fUML, etc)

– Procedures that create a behavior occurrence
• Conforming to a UML model. 

– Don’t tell whether
• An existing behavior occurrence conforms.
• Tools are producing correct occurrences

 Classification does the opposite
– Tells whether an existing behavior occurrence 

conforms to a model.
– Doesn’t say how to create an occurrence.

• Execution engines and reasoners do this.
– Enables semantic conformance testing. 23
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SysML background
 Solicited feedback from requirement 

engineers.
– They couldn’t agree.

 Only the most widely used capabilities 
supported in SysML.
 SysML (mostly) and this deck about 

functional requirements
– Functional = during operation.
– Non-functional, eg, cost, manufacturing 

speed, etc. 25



Requirements and Designs

 Requirements “rolldown”
– Derived alongside design specialization.26

«deriveReqt»

«deriveReqt»

«deriveReqt»

«requirement»
Traction

“Slip no more than 1% of 
any meter travelled.”

«satisfy» «block»
Dry Land Vehicle

«requirement»
Transportation Safety

“Less than 10 deaths per
100 million km / yr.”

«block»
Vehicle

«satisfy»

«requirement»
Wheel Rotation on Curves
“Slip no more than 1% per rotation.”

«satisfy» «block»
Wheel

«block»
Car

«requirement»
Stopping Distance
“Less than half the vehicle

length per 10 km/h.”

«satisfy» «block»
Small Vehicle

«refine»

«refine»

«refine»



Onto: What’s Being Modeled?

 Requirements specify (constrain) objects around 
a (hypothetical) device during its operation.
– They do not specify / constrain the device. 27

Operating
Environment

Device
(machine,
system)

Device
conforming to
Design 1

Device
conforming to
Design 2

Device
conforming to
Design 3

Alternative Designs
Requirements are 
about the environment

Zave, P., Jackson, M., “Four Dark Corners of Requirements Engineering.” ACM Transactions on Software Engineering and Methodology 6 (1): 1–30, 1997.
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Lawn Mowing Requirements

28

Operating
Environment

Device

Requirement is to 
make grass shorter
(nothing about device)



Operating Environment
 Requirements specify:

– Effects of a (future) device …
– … when it is operated properly.

 Effects don’t matter when device is 
operated improperly.
– They could be the right ones or not.

29



Proper Operation Spec’d By
 Customers, for all (future) designs

– Eg, easy to use.
– Limits designers.

 Designers, for their particular design
– Eg, operating manuals / trainings.
– Limits operators.
– Operation differs by kind of device (design)

• But is still only about environment, not device.
• Not designs (could apply to multiple designs).

30



Operation and Effect

 Want devices that produce the desired 
effects when operated properly. 31

Operating
Environment

Device
(machine,
system)

Device
conforming to
Design 1

Device
conforming to
Design 2

Device
conforming to
Design 3

Alternative Designs

Some op constraints 
apply to all designs

Some apply only
for some designs



Requirements & Designs 
Requirements

1. Logical interpretation for 
requirement satisfaction/derivation 
and design refinement.

2. Treat requirements as specifying 
operational environment behavior
– Operation
– Effect

32
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Generalization? (M1)

 Designs obey constraints of requirements.
 Derived requirements obey general ones.
 Refined designs obey general ones. 34

«requirement»
Traction

“Slip no more than 1% of 
any meter travelled.”

«requirement»
Transportation Safety

“Less than 10 deaths per
100 million km / yr.”

«requirement»
Stopping Distance
“Less than half the vehicle

length per 10 km/h.”

«requirement»
Wheel Rotation on Curves
“Slip no more than 1% per rotation.”

«block»
Wheel

System
Model
(M1)

«block»
Dry Land Vehicle

«block»
Small Vehicle

«block»
Car

«block»
Vehicle

«deriveReqt»

«deriveReqt»

«deriveReqt»

«satisfy»

«satisfy»

«satisfy»

«refine»

«refine»

«refine»

«satisfy»



Generalization? (M2)

 Engineers use SysML layer of M2
 Reasoners use logical layer 35

specificgeneral
Class

SatisfyRequirement

Logical 
language 

SysML

System
Model
(M1)

Metamodel
(M2)

Block

Generalization

«requirement»
Transporting Safety
“Less than .001 deaths per

10 thousand km / yr.”

«requirement»
Stopping Quickly

“Less than half the vehicle
length per 10 km/h.”

«block»
Vehicle

«block»
Small

Vehicle

«deriveReqt»

«satisfy»

«satisfy»

«refine»

DeriveRqt Refine



Objects aren’t Behaviors

 Behaviors don’t generalize objects.
– Need same kinds of things on both ends 

of requirement satisfaction. 36

«requirement»
Transportation Safety

“Less than 10 deaths per
100 million km / yr.”

«requirement»
Stopping Distance
“Less than half the vehicle

length per 10 km/h.”

«block»
Vehicle

«block»
Small Vehicle

«satisfy»

«satisfy»

Behaviors Objects

«deriveReqt» «refine»



Total Systems

 Behaviors involve objects.
 Total systems involve devices and 

objects in their environment.
37

Model
(M1)

Standard
Model Library

involves

*

Object
Occurrence

happens
Before

Behavior
Occurrence

Occurrence

*

happens
During

Total System
Occurrence

device

1..**

opEnvObj

1..**

{s}

       



device

1*

Req/Des as Total Systems (M1)

 Total systems enables generalization to be 
used for requirement satisfaction. 38

Object
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device

1..*

Model
(M1)

System
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«requirement»
Transporting Safety
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Req/Des as Total Systems (M2)
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“Less than .001 deaths per

10 thousand km / yr.”

«requirement»
Stopping Quickly

“Less than half the vehicle
length per 10 km/h.”
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Example Using Generalization (M1)
Object

Occurrence

Model
(M1)

Standard
Model Library

pp

PictureTaking

happens
During

due : 
Occurrence

result : Picture
target : Location

Picture
target : Location

produces
{subsets happensBefore}

Operating
Camera

Require
ment

Initial
design

result

PictureTakingD1

^happens
During

^due : 
Occurrence

^result : Picture
target : Location

produces

=
pp : Camera

«state»
takingPicture :

^pointedAt : Location

System
model

1

opEnvObj

1..**

device

1..**Total System
Occurrence {r}

{r}

«state»
takingPicture

Camera
pointedAt : Location

40

  



Model
(M1)

pp

«state»
powered

«state»
warm

«state»
takingPicture

bb

Operating
Camera

Initial
design

PictureTakingD1

^happens
During

^due : 
Occurrence

^result : Picture
target : Location

produces

=
pp : Camera

«state»
takingPicture :

^pointedAt : Location

1

«state»
turning

PictureTakingD2

^happens
During

^due : 
Occurrence

^result : Picture
target : Location

Platform
orientation : 3DAngle

^produces

^pp : Camera
structure

«state»
takingPicture :

^pointedAt : Location

supports

DeviceOnPlatform
heats

supports

«state»
operating

«state»
~warm :

heats

happens
While

Heater

^=

{ fixpp.orientation = fixppO(
pp.takingPicture.pointedAt) }

fixpp : Platform

orientation : 3DAngle
states

turning : Platform

wpp : Heater
states

operating : Heater

R
ef

in
ed

 d
es

ig
n

wpp

fixpp

happens
While

«state»
platform
Ready

1

Camera
pointedAt : Location

41
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<

System
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Example Using Generalization (M2)

42
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Requirement
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Generalization

RefineSatisfy

Behavior

PictureTaking
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due : 
Occurrence

result : Picture
target : Location

PictureTakingD1

^happens
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^due : 
Occurrence

^result : Picture
target : Location

produces

=
pp : Camera

«state»
takingPicture :

^pointedAt : Location

1

PictureTakingD2

^happens
During

^due : 
Occurrence

^result : Picture
target : Location

^produces

^pp : Camera
structure

«state»
takingPicture :

^pointedAt : Location

supports

«state»
~warm :

heats

happens
While

^= fixpp : Platform

orientation : 3DAngle
states

turning : Platform

wpp : Heater
states

operating : Heater

happens
While

1

«state»
~platformReady :

DeriveRqt Design



Generalization?  Not quite.
1. Design can restrict operation

requirement
– Design could work in limited operation 

cases and still be a specialization.
2. Design will always satisfy effect 

requirement
– Design occurrences that don’t have 

desired are excluded by generalization.

43



1) Design Restricting Operations

 Specializations are usually narrower.
– = subsets of PictureTaking occurrences.44

PictureTaking

happens
During

due : 
Occurrence

result : Picture
target : Location

Requirement

Initial
design

RestrictedPictureTaking

^happens
During

due : Tuesday^result : Picture
target : Location

produces

=
pp : Camera

«state»
takingPicture :

pointedAt : Desert

1

Any location
Model
(M1)

Only desert
locations

Anytime

Only on
Tuesdays



2) Effects Always Satisfied

 Specializations might loosen effects
– But still subsets PictureTaking occurrences.45

PictureTaking

happens
During

due : 
Occurrence

result : Picture
target : Location

Requirement

Initial
design

PictureTakingSometimes

^happens
During

due : 
Occurrence

^result : Picture
target : Location

Model
(M1)

produces

pp : Camera

«state»
takingPicture :

^pointedAt : Location

0..1

0..1
Might take
picture

Might produce 
picture

=



Syntactic Solutions?  Not quite.
1. UML::isFinal = true on operation 

elements prevents narrowing type/mult
– Doesn’t prevent restrictions due to 

• Bindings (eg, to camera target).
• Interactions among design elements. 

2. UML redefinition doesn’t allow loosening 
type/mult (on effect elements)
– Doesn’t prevent loosening due to 

• Decision nodes / states, alt fragments.
• Interactions among design elements. 

46
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Separate Operation And Effect

 Distinguished which parts of 
requirement are mandatory. 48

PictureTakingMaybe
0..1
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During

due : 
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result : Picture
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R
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Total System
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during the due period
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All Operations of Device …

 All total system occurrences satisfying 
operation requirements on using device
– Anytime, any location. 49

Model
(M1)

Object
Occurrence

device

1..**
Total System
Occurrence

{r}

PictureTakingOperation
0..1

happens
During

due : 
Occurrence

result : Picture
target : Location [1]

0..1 1

System
model

Standard
Model Library

R
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m
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PictureTakingOperationWithCamera
{ isSufficient = true }

0..1

happens
During

due : 
Occurrence

result : Picture
target : Location [1]

0..1 1
Cameradevice

1



PictureTakingOperationWithCamera
{ isSufficient = true }

… Have Desired Effects …

50
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… And Conform to Design

PictureTakingD1

^happens
During

^due : 
Occurrence

^result : Picture
target : Location

produces

=
pp : Camera

«state»
takingPicture :

^pointedAt : Location

1

Model
(M1)

Object
Occurrence

device

1..**
Total System
Occurrence

{r}

System
model
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PictureTakingOperation
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0..10..1 Camera
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Req Satisfaction Pattern (M1)

 Stereotypes indicate possible M2
– TBD 52

device

1*

Object
Occurrence

device

1..*

Model
(M1)

System
Model

«DeviceOperation»
Proper D Operation
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(Cool)D
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Operating D

{r}
*

Standard
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Total System
Occurrence

«OperationReq»
Proper

Operation

«EffectReq»
Desired
Effect

*

1    device



TBD
 Easier requirement satisfaction 

modeling
– M2
– Anything simpler for M1?

 Finding requirement violations
– Tests
– Search

56
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Summary
 Requirements specify operating 

environment of device only
– Operation and effect.

 Designs specify device only
– Internals and relation to environment.

 Treat requirements and designs as 
behavior occurrences
– of operating environment and device together 

(total system).

58



Summary
 Requirement satisfaction is not 

generalization.  Design
– Must produce desired effects whenever 

operated properly.
– Can’t narrow operations.
– Can’t loosen effects.

 Generalize all operations of a kind of 
device (sufficient) by
– Proper operation
– Desired effect
– Design of the same kind of device (as 

total system behavior).
59



Past ADTF Intro Slides
 Intro to Behavior as Composite Structure

– http://doc.omg.org/ad/2018-03-02

 Interactions: http://doc.omg.org/ad/18-06-11

 Object-orientation: http://doc.omg.org/ad/18-09-07

 State Machines, parts 1&2:
– http://doc.omg.org/ad/18-12-09
– http://doc.omg.org/ad/19-03-02

 Activities, part 2: http://doc.omg.org/ad/19-06-02

 4D: http://doc.omg.org/ad/19-09-07

60
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More Information
 Earlier slides (more onto)

– http://conradbock.org/bock-ontological-behavior-modeling-jpl-
slides.pdf

 Papers:
– Ontological Behavior Modeling: 

http://dx.doi.org/10.5381/jot.2011.10.1.a3
– Ontological Product Modeling: 

https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=
822748

– 4D Requirements Modeling: 
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=
919164

 Application to BPMN: 
http://conradbock.org/#BPDM

 SysML2: Contact Bjorn Cole bjorn.f.cole@lmco.com 61

http://conradbock.org/bock-ontological-behavior-modeling-jpl-slides.pdf
http://dx.doi.org/10.5381/jot.2011.10.1.a3
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=822748
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=919164
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