
(Onto) Logical Requirements
and Designs

Conrad Bock
U.S. National Institute of Standards and Technology

Raphael Barbau
Engisis

2

Overview
 RoadMap
 Motivation

– Behavior, review
– Requirements and designs, requirements

 Requirements and designs, Solution
1. Satisfaction, derivation, and refinement
2. Operation and effect

 Summary

3

Overview
 RoadMap
 Motivation

– Behavior, review
– Requirements and designs, requirements

 Requirements and designs, Solution
1. Satisfaction, derivation, and refinement
2. Operation and effect

 Summary

Behavior as Composite Structure

4

Onto State Machines, Parts 1 & 2
(ad/18-12-09, 19-03-02)

Onto Behavior Basics
(ad/2018-03-02)

Onto Interactions
(ad/18-06-11)

Onto OO
(ad/18-09-07)

Onto Activities
(ad/19-06-02)

Onto 4D
(ad/19-09-07)

Onto Requirements and Designs
(this one)

5

Overview
 RoadMap
 Motivation

– Behavior, review
– Requirements and designs, requirements

 Requirements and designs, Solution
1. Satisfaction, derivation, and refinement
2. Operation and effect

 Summary

Original Problem
 UML has three behavior diagrams.

– Activity, state, interaction.
 Very little integration or reuse between

them.
– Three underlying metamodels.
– Three representations of temporal order.

 Triples the effort of learning UML and
building analysis tools for it.

6

General Solution
 Treat behaviors as assemblies of

other behaviors.
– Like objects are assemblies of other

objects.
 Assembly = UML internal structure

– Pieces represented by properties.
– Put together by connectors.

 Put all behavior diagrams on the
same underlying behavior assembly
model.

7

stm TireTraction [State Diagram]

Gripping Slipping

LossOfTraction

RegainTraction

Behaviors as Composite Structure

8

sd ABS_ActivationSequence [Sequence Diagram]

detTrkLos()

modBrkFrc()

sendSignal()

modBrkFrc(traction_signal:boolean)

sendAck()

d1:Traction
Detector

m1:Brake
Modulator

act PreventLockup [Activity Diagram]

Activity

State Machine

Interaction

Property

Connector

Property

Connector

Property

Connector

9

Behavior as Timing Constraints

 Behaviors model “things” happening over time.
– With temporal relations (time constraints) between them.

Time

Shoot

Focus
Behavior

Take Picture

TakePicture

ShootFocus
Model
(M1)

Things
Being
Modeled
(M0)

Happens during

Happens before

10

Behavior as Timing Constraints

 The TakePicture occurrence on the right does
not follow the behavior model.

Time

Shoot

Focus
Behavior

Take Picture

TakePicture

ShootFocus
Model
(M1)

Things
Being
Modeled
(M0)

11

Behavior as “Composite Timing”

 Composite structure relations are temporal:
– Part-whole = happens during.
– Part-part = happens before.

Time

Shoot

Focus
Behavior

Take Picture

TakePicture

ShootFocus
Model
(M1)

Things
Being
Modeled
(M0)

Part-whole

Part-part

Part-whole Part-part

Behavior as “Composite Timing”

12

class TakePicture

step1: Focus

step2 : Shoot

: HappensBefore

Focusing before shooting in same taking picture

Model
(M1)

Things
Being
Modeled
(M0)

:Happens
Before

:Happens
Before

step2 step2step1step1

TakingPic2:

Focusing
DuringTP2:

Shooting
DuringTP2:

Shooting
DuringTP1:

TakingPic1:

Focusing
DuringTP1:

HappensBefore

step1
Focus

step2
Shoot

Property
(whole-part)

Connector
(part-part)

Not instance specs

Model and Things Being Modeled

 Dashed arrows between M1 and M0
mean 13

Time

Shoot

Focus
Behavior

Take Picture

TakePicture

ShootFocus
Model
(M1)

Things
Being
Modeled
(M0)

M0  M1 Synonyms

Classified by
Modeled by
Specified by
Conforms to
Follows
Satisfies (logically)

Not quite: Instance of (in the OO sense)
Not at all : Execution of (in the software sense)14

Time

Shoot

Focus
Behavior

Take Picture

TakePicture

ShootFocus
Model
(M1)

Things
Being
Modeled
(M0)

Behavior: What’s Being Modeled?

 “Things” that occur in time
– Eg, taking a picture, focusing, etc.
– Not “behaviors”, “actions”, etc.

15

Focus
3/15/09 10-11pmET :

TakePicture
3/15/09 10-12pmET :

Real,
Simulated,
or Desired

Things Being
Modeled (M0)

Shoot
3/15/0911-12pmET :Not instance

specs.

Behavior: What’s in Common?

 They happen before or during each
other.
– Construct M1 library for this.
– Use it to classify things being modeled. 16

Things Being
Modeled (M0)

happens
During-1 Focus

3/15/09 10-11pmET :
TakePicture

3/15/09 10-12pmET :

Shoot
3/15/0911-12pmET :

happensBefore

Behavior
Occurrence

happens
During-1

happens
Before

Standard
Model Library

(M1)

happens
During-1

Behavior: Use Library

 Specialize library classes and
subset/redefine library properties. 17

Things Being
Modeled (M0)

step1 Focus
3/15/09 10-11pmET :

TakePicture
3/15/09 10-12pmET :

Shoot
3/15/0911-12pmET :

HappensBefore

Behavior
Occurrence

happens
During-1

happens
Before

Standard
Model Library

(M1)

System
Model

(M1)

step2

TakePicture

step1 : Focus step2 : Shoot
: HappensBefore

{subsets}

Behavior: Too repetitive at M1?

 Capture M1 patterns in M2 elements.
– Tools apply patterns automatically.

18

Property

type

owned
Property

Connector
role

type

fromStep

toStep

owned
Connector

Association

Class

Step
ownedStep

Behavior

{redefines}

Metamodel
(M2)

Things Being
Modeled (M0)

step1 Focus
3/15/09 10-11pmET :

TakePicture
3/15/09 10-12pmET :

Shoot
3/15/0911-12pmET :

HappensBefore

System
Model
(M1)

step2

TakePicture

step2 : Shoot
: HappensBefore

Succession

step1 : Focus

Benefits: Original Problem
 Flexibility in using metamodels

– Add metaelements as needed to simplify
library usage.

 Many metaelements become synonyms
– Application / method / diagram-specific

terminology sharing same semantics.
– M2 actions, states, etc, => M1 happensDuring

 Learning UML and building analysis tools
for it is easier
– Due to shared semantics for variety of

modeling language terminology. 19

20

Benefits: Expressiveness

 Constraints are inherited in UML
– including temporal constraints.

Time

Focus

TakePicture

Shoot

TakeSpecialPicture

Log
Behavior

Take Picture

MultiFocus

ShootFocus ShootMulti
Focus Log

Model
(M1)

Things
Being
Modeled
(M0)

MultiFocusFocus

HappensDuring

HappensBefore

Benefits: Expressiveness

 Combine activity and state machines.
– States and actions happen during their

“containing” occurrences, ordered in time.21

TakePicture

ShootFocus
button
Press

: Exposure

Event

Object flow

: Exposure

Benefits: Modeled Semantics
 UML semantics is written in free text

– Specifying an execution procedure for
activities and state machines:

– and trace classification in interactions:

 Model in standard libraries. 22

Benefits: Classification Semantics
 Standard execution models for UML (fUML, etc)

– Procedures that create a behavior occurrence
• Conforming to a UML model.

– Don’t tell whether
• An existing behavior occurrence conforms.
• Tools are producing correct occurrences

 Classification does the opposite
– Tells whether an existing behavior occurrence

conforms to a model.
– Doesn’t say how to create an occurrence.

• Execution engines and reasoners do this.
– Enables semantic conformance testing. 23

24

Overview
 RoadMap
 Motivation

– Behavior, review
– Requirements and designs, requirements

 Requirements and designs, Solution
1. Satisfaction, derivation, and refinement
2. Operation and effect

 Summary

SysML background
 Solicited feedback from requirement

engineers.
– They couldn’t agree.

 Only the most widely used capabilities
supported in SysML.
 SysML (mostly) and this deck about

functional requirements
– Functional = during operation.
– Non-functional, eg, cost, manufacturing

speed, etc. 25

Requirements and Designs

 Requirements “rolldown”
– Derived alongside design specialization.26

«deriveReqt»

«deriveReqt»

«deriveReqt»

«requirement»
Traction

“Slip no more than 1% of
any meter travelled.”

«satisfy» «block»
Dry Land Vehicle

«requirement»
Transportation Safety

“Less than 10 deaths per
100 million km / yr.”

«block»
Vehicle

«satisfy»

«requirement»
Wheel Rotation on Curves
“Slip no more than 1% per rotation.”

«satisfy» «block»
Wheel

«block»
Car

«requirement»
Stopping Distance
“Less than half the vehicle

length per 10 km/h.”

«satisfy» «block»
Small Vehicle

«refine»

«refine»

«refine»

Onto: What’s Being Modeled?

 Requirements specify (constrain) objects around
a (hypothetical) device during its operation.
– They do not specify / constrain the device. 27

Operating
Environment

Device
(machine,
system)

Device
conforming to
Design 1

Device
conforming to
Design 2

Device
conforming to
Design 3

Alternative Designs
Requirements are
about the environment

Zave, P., Jackson, M., “Four Dark Corners of Requirements Engineering.” ACM Transactions on Software Engineering and Methodology 6 (1): 1–30, 1997.

To
ta

l S
ys

te
m

Lawn Mowing Requirements

28

Operating
Environment

Device

Requirement is to
make grass shorter
(nothing about device)

Operating Environment
 Requirements specify:

– Effects of a (future) device …
– … when it is operated properly.

 Effects don’t matter when device is
operated improperly.
– They could be the right ones or not.

29

Proper Operation Spec’d By
 Customers, for all (future) designs

– Eg, easy to use.
– Limits designers.

 Designers, for their particular design
– Eg, operating manuals / trainings.
– Limits operators.
– Operation differs by kind of device (design)

• But is still only about environment, not device.
• Not designs (could apply to multiple designs).

30

Operation and Effect

 Want devices that produce the desired
effects when operated properly. 31

Operating
Environment

Device
(machine,
system)

Device
conforming to
Design 1

Device
conforming to
Design 2

Device
conforming to
Design 3

Alternative Designs

Some op constraints
apply to all designs

Some apply only
for some designs

Requirements & Designs
Requirements

1. Logical interpretation for
requirement satisfaction/derivation
and design refinement.

2. Treat requirements as specifying
operational environment behavior
– Operation
– Effect

32

33

Overview
 RoadMap
 Motivation

– Behavior, review
– Requirements and designs, requirements

 Requirements and designs, Solution
1. Satisfaction, derivation, and refinement
2. Operation and effect

 Summary

Generalization? (M1)

 Designs obey constraints of requirements.
 Derived requirements obey general ones.
 Refined designs obey general ones. 34

«requirement»
Traction

“Slip no more than 1% of
any meter travelled.”

«requirement»
Transportation Safety

“Less than 10 deaths per
100 million km / yr.”

«requirement»
Stopping Distance
“Less than half the vehicle

length per 10 km/h.”

«requirement»
Wheel Rotation on Curves
“Slip no more than 1% per rotation.”

«block»
Wheel

System
Model
(M1)

«block»
Dry Land Vehicle

«block»
Small Vehicle

«block»
Car

«block»
Vehicle

«deriveReqt»

«deriveReqt»

«deriveReqt»

«satisfy»

«satisfy»

«satisfy»

«refine»

«refine»

«refine»

«satisfy»

Generalization? (M2)

 Engineers use SysML layer of M2
 Reasoners use logical layer 35

specificgeneral
Class

SatisfyRequirement

Logical
language

SysML

System
Model
(M1)

Metamodel
(M2)

Block

Generalization

«requirement»
Transporting Safety
“Less than .001 deaths per

10 thousand km / yr.”

«requirement»
Stopping Quickly

“Less than half the vehicle
length per 10 km/h.”

«block»
Vehicle

«block»
Small

Vehicle

«deriveReqt»

«satisfy»

«satisfy»

«refine»

DeriveRqt Refine

Objects aren’t Behaviors

 Behaviors don’t generalize objects.
– Need same kinds of things on both ends

of requirement satisfaction. 36

«requirement»
Transportation Safety

“Less than 10 deaths per
100 million km / yr.”

«requirement»
Stopping Distance
“Less than half the vehicle

length per 10 km/h.”

«block»
Vehicle

«block»
Small Vehicle

«satisfy»

«satisfy»

Behaviors Objects

«deriveReqt» «refine»

Total Systems

 Behaviors involve objects.
 Total systems involve devices and

objects in their environment.
37

Model
(M1)

Standard
Model Library

involves

*

Object
Occurrence

happens
Before

Behavior
Occurrence

Occurrence

*

happens
During

Total System
Occurrence

device

1..**

opEnvObj

1..**

{s}

device

1*

Req/Des as Total Systems (M1)

 Total systems enables generalization to be
used for requirement satisfaction. 38

Object
Occurrence

device

1..*

Model
(M1)

System
Model

«requirement»
Transporting Safety
“Less than .001 deaths per

10 thousand km / yr.”

«requirement»
Stopping Quickly

“Less than half the vehicle
length per 10 km/h.”

«block»
Vehicle

«block»
Small

Vehicle
«s

at
is

fy
»

«s
at

is
fy

»

«deriveReqt»

«design»
Operating

Vehicle

device

1*

«design»
Operating

Small Vehicle

{r}

{r}

*
Standard

Model Library
Total System
Occurrence

Requirements do not
restrict (specify) devices

Designs do

«refine»

Req/Des as Total Systems (M2)

39

Model
(M1)

System
Model

specificgeneral
Class

Requirement

Logical
language

SysML +

Metamodel
(M2)

Generalization

Behavior

DesignSatisfy Refine

device

1*

«requirement»
Transporting Safety
“Less than .001 deaths per

10 thousand km / yr.”

«requirement»
Stopping Quickly

“Less than half the vehicle
length per 10 km/h.”

«block»
Vehicle

«block»
Small

Vehicle

«deriveReqt»

device

1*

{r}

«s
at

is
fy

»
«s

at
is

fy
»

«design»
Operating

Vehicle

«design»
Operating

Small Vehicle

DeriveRqt

«refine»

Block

Example Using Generalization (M1)
Object

Occurrence

Model
(M1)

Standard
Model Library

pp

PictureTaking

happens
During

due :
Occurrence

result : Picture
target : Location

Picture
target : Location

produces
{subsets happensBefore}

Operating
Camera

Require
ment

Initial
design

result

PictureTakingD1

^happens
During

^due :
Occurrence

^result : Picture
target : Location

produces

=
pp : Camera

«state»
takingPicture :

^pointedAt : Location

System
model

1

opEnvObj

1..**

device

1..**Total System
Occurrence {r}

{r}

«state»
takingPicture

Camera
pointedAt : Location

40

Model
(M1)

pp

«state»
powered

«state»
warm

«state»
takingPicture

bb

Operating
Camera

Initial
design

PictureTakingD1

^happens
During

^due :
Occurrence

^result : Picture
target : Location

produces

=
pp : Camera

«state»
takingPicture :

^pointedAt : Location

1

«state»
turning

PictureTakingD2

^happens
During

^due :
Occurrence

^result : Picture
target : Location

Platform
orientation : 3DAngle

^produces

^pp : Camera
structure

«state»
takingPicture :

^pointedAt : Location

supports

DeviceOnPlatform
heats

supports

«state»
operating

«state»
~warm :

heats

happens
While

Heater

^=

{ fixpp.orientation = fixppO(
pp.takingPicture.pointedAt) }

fixpp : Platform

orientation : 3DAngle
states

turning : Platform

wpp : Heater
states

operating : Heater

R
ef

in
ed

 d
es

ig
n

wpp

fixpp

happens
While

«state»
platform
Ready

1

Camera
pointedAt : Location

41

«state»
~platformReady :

<

System
model

Example Using Generalization (M2)

42

specificgeneral
Class

Requirement

Logical
language

SysML +

System
Model
(M1)

Metamodel
(M2)

Generalization

RefineSatisfy

Behavior

PictureTaking

happens
During

due :
Occurrence

result : Picture
target : Location

PictureTakingD1

^happens
During

^due :
Occurrence

^result : Picture
target : Location

produces

=
pp : Camera

«state»
takingPicture :

^pointedAt : Location

1

PictureTakingD2

^happens
During

^due :
Occurrence

^result : Picture
target : Location

^produces

^pp : Camera
structure

«state»
takingPicture :

^pointedAt : Location

supports

«state»
~warm :

heats

happens
While

^= fixpp : Platform

orientation : 3DAngle
states

turning : Platform

wpp : Heater
states

operating : Heater

happens
While

1

«state»
~platformReady :

DeriveRqt Design

Generalization? Not quite.
1. Design can restrict operation

requirement
– Design could work in limited operation

cases and still be a specialization.
2. Design will always satisfy effect

requirement
– Design occurrences that don’t have

desired are excluded by generalization.

43

1) Design Restricting Operations

 Specializations are usually narrower.
– = subsets of PictureTaking occurrences.44

PictureTaking

happens
During

due :
Occurrence

result : Picture
target : Location

Requirement

Initial
design

RestrictedPictureTaking

^happens
During

due : Tuesday^result : Picture
target : Location

produces

=
pp : Camera

«state»
takingPicture :

pointedAt : Desert

1

Any location
Model
(M1)

Only desert
locations

Anytime

Only on
Tuesdays

2) Effects Always Satisfied

 Specializations might loosen effects
– But still subsets PictureTaking occurrences.45

PictureTaking

happens
During

due :
Occurrence

result : Picture
target : Location

Requirement

Initial
design

PictureTakingSometimes

^happens
During

due :
Occurrence

^result : Picture
target : Location

Model
(M1)

produces

pp : Camera

«state»
takingPicture :

^pointedAt : Location

0..1

0..1
Might take
picture

Might produce
picture

=

Syntactic Solutions? Not quite.
1. UML::isFinal = true on operation

elements prevents narrowing type/mult
– Doesn’t prevent restrictions due to

• Bindings (eg, to camera target).
• Interactions among design elements.

2. UML redefinition doesn’t allow loosening
type/mult (on effect elements)
– Doesn’t prevent loosening due to

• Decision nodes / states, alt fragments.
• Interactions among design elements.

46

47

Overview
 RoadMap
 Motivation

– Behavior, review
– Requirements and designs, requirements

 Requirements and designs, Solution
1. Satisfaction, derivation, and refinement
2. Operation and effect

 Summary

Separate Operation And Effect

 Distinguished which parts of
requirement are mandatory. 48

PictureTakingMaybe
0..1

happens
During

due :
Occurrence

result : Picture
target : Location [0..1]

Model
(M1)

0..10..1

PictureTakingEffect
1

happens
During

due :
Occurrence

result : Picture
target : Location [0..1]

1

PictureTakingOperation
0..1

happens
During

due :
Occurrence

result : Picture
target : Location [1]

0..1 1

System
model

Must have due period
and location

Standard
Model Library

R
eq

ui
re

m
en

ts

Total System
Occurrence

Must have result existing
during the due period

0..1

All Operations of Device …

 All total system occurrences satisfying
operation requirements on using device
– Anytime, any location. 49

Model
(M1)

Object
Occurrence

device

1..**
Total System
Occurrence

{r}

PictureTakingOperation
0..1

happens
During

due :
Occurrence

result : Picture
target : Location [1]

0..1 1

System
model

Standard
Model Library

R
eq

ui
re

m
en

ts

PictureTakingOperationWithCamera
{ isSufficient = true }

0..1

happens
During

due :
Occurrence

result : Picture
target : Location [1]

0..1 1
Cameradevice

1

PictureTakingOperationWithCamera
{ isSufficient = true }

… Have Desired Effects …

50

Model
(M1)

Total System
Occurrence

PictureTakingOperation
0..1

happens
During

due :
Occurrence

result : Picture
target : Location [1]

0..1 1

System
model

Standard
Model Library

R
eq

ui
re

m
en

ts

0..1

happens
During

due :
Occurrence

result : Picture
target : Location [1]

0..1 1

PictureTakingEffect
1

happens
During

due :
Occurrence

result : Picture
target : Location

1 0..1

51

… And Conform to Design

PictureTakingD1

^happens
During

^due :
Occurrence

^result : Picture
target : Location

produces

=
pp : Camera

«state»
takingPicture :

^pointedAt : Location

1

Model
(M1)

Object
Occurrence

device

1..**
Total System
Occurrence

{r}

System
model

Standard
Model Library

PictureTakingOperation
WithCamera

{ isSufficient = true }

PictureTaking
Effect

PictureTaking
Operation

PictureTakingMaybe
0..1

happens
During

due :
Occurrence

result : Picture
target : Location [0..1]

0..10..1 Camera

pp

Req Satisfaction Pattern (M1)

 Stereotypes indicate possible M2
– TBD 52

device

1*

Object
Occurrence

device

1..*

Model
(M1)

System
Model

«DeviceOperation»
Proper D Operation
{ isSufficient = true }

«block»
(Cool)D

«design»
Operating D

{r}
*

Standard
Model Library

Total System
Occurrence

«OperationReq»
Proper

Operation

«EffectReq»
Desired
Effect

*

1 device

TBD
 Easier requirement satisfaction

modeling
– M2
– Anything simpler for M1?

 Finding requirement violations
– Tests
– Search

56

57

Overview
 RoadMap
 Motivation

– Behavior, review
– Requirements and designs, requirements

 Requirements and designs, Solution
1. Satisfaction, derivation, and refinement
2. Operation and effect

 Summary

Summary
 Requirements specify operating

environment of device only
– Operation and effect.

 Designs specify device only
– Internals and relation to environment.

 Treat requirements and designs as
behavior occurrences
– of operating environment and device together

(total system).

58

Summary
 Requirement satisfaction is not

generalization. Design
– Must produce desired effects whenever

operated properly.
– Can’t narrow operations.
– Can’t loosen effects.

 Generalize all operations of a kind of
device (sufficient) by
– Proper operation
– Desired effect
– Design of the same kind of device (as

total system behavior).
59

Past ADTF Intro Slides
 Intro to Behavior as Composite Structure

– http://doc.omg.org/ad/2018-03-02

 Interactions: http://doc.omg.org/ad/18-06-11

 Object-orientation: http://doc.omg.org/ad/18-09-07

 State Machines, parts 1&2:
– http://doc.omg.org/ad/18-12-09
– http://doc.omg.org/ad/19-03-02

 Activities, part 2: http://doc.omg.org/ad/19-06-02

 4D: http://doc.omg.org/ad/19-09-07

60

http://doc.omg.org/ad/2018-03-02
http://doc.omg.org/ad/18-06-11
http://doc.omg.org/ad/18-09-07
http://doc.omg.org/ad/18-12-09
http://doc.omg.org/ad/19-03-02
http://doc.omg.org/ad/19-06-02
http://doc.omg.org/ad/19-09-07

More Information
 Earlier slides (more onto)

– http://conradbock.org/bock-ontological-behavior-modeling-jpl-
slides.pdf

 Papers:
– Ontological Behavior Modeling:

http://dx.doi.org/10.5381/jot.2011.10.1.a3
– Ontological Product Modeling:

https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=
822748

– 4D Requirements Modeling:
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=
919164

 Application to BPMN:
http://conradbock.org/#BPDM

 SysML2: Contact Bjorn Cole bjorn.f.cole@lmco.com 61

http://conradbock.org/bock-ontological-behavior-modeling-jpl-slides.pdf
http://dx.doi.org/10.5381/jot.2011.10.1.a3
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=822748
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=919164
http://conradbock.org/#BPDM
mailto:bjorn.f.cole@lmco.com

	(Onto) Logical Requirements and Designs
	Overview
	Roadmap
	Behavior, Review
	Original Problem
	General Solution
	Behaviors as Composite Structure
	Behavior as Timing Constraints
	Behavior as Timing Constraints
	Behavior as “Composite Timing”
	Behavior as “Composite Timing”

	Model and Things Being Modeled
	M0  M1 Synonyms

	Onto Method
	Behavior: What’s Being Modeled?
	Behavior: What’s in Common?
	Behavior: Use Library
	Behavior: Too repetitive at M1?

	Benefits
	Original Problem
	Expressiveness
	Expressiveness
	Modeled Semantics
	Classification Semantics

	Requirements and Designs, Requirements
	SysML background
	Requirements and Designs
	Onto: What’s Being Modeled?
	Lawn Mowing Requirements
	Operating Environment
	Proper Operation Spec’d By
	Operation and Effect
	Requirements & Designs Requirements

	Requirements and Designs, Solution 1
	Generalization? (M1)
	Generalization? (M2)
	Objects aren’t Behaviors
	Total Systems
	Req/Des as Total Systems (M1)
	Req/Des as Total Systems (M2)
	Example Using Generalization
	Example Using Generalization (M1)
	Example Using Generalization (M1)
	Example Using Generalization (M2)

	Generalization? Not quite.
	1) Design Restricting Operations
	2) Effects Always Satisfied
	Syntactic Solutions? Not quite.

	Requirements and Designs, Solution 2
	Separate Operation And Effect
	All Operations of Device …
	… Have Desired Effects …
	… And Conform to Design
	Req Satisfaction Pattern (M1)

	TBD
	Summary
	Past ADTF Intro Slides
	More Information

