engineering

]
[]
. i

Ioleloge|

State Machines as

Composite Structure:

(Onto)Logical State Machines
Part 2

Bjorn Cole
Georgia Institute of Technology

Conrad Bock,
U.S. National Institute of Standards and Technology

NIST

Motienal Institute of Standards and Technology

Overview

= RoadMap

= Motivation

— Behavior, review

— Interactions, review

— State machines Part 1, review

— State machines Part 2, requirements
= State Machines Solution, Part 2

1. Objects reacting to stimuli

2. Synchronizing state changes

3. Managing stimuli

= Summary

Behavior as Composite Structure
Presentation Stack

Onto State Machines, Part 2

Onto State Machines, Part 1
(ad/18-12-09)

Onto OO
(ad/18-09-07)

Onto Interactions
(ad/18-06-11)

Onto Behavior Basics
(ad/2018-03-02)

Overview

= RoadMap

= Motivation
— Behavior, review
— Interactions, review
— State machines Part 1, review
— State machines Part 2, requirements

= State Machines Solution, Part 2
1. Objects reacting to stimuli

2. Synchronizing state changes
3. Managing stimuli

= Summary

Original Problem

= UML has three behavior diagrams.
— Activity, state, interaction.
= Very little integration or reuse between
them.
— Three underlying metamodels.
— Three representations of temporal order.

= Triples the effort of learning UML and
building analysis tools for It.

General Solution

= Treat behaviors as assemblies of
other behaviors.

— Like objects are assemblies of other
objects.

= Assembly = UML internal structure
— Pleces represented by properties.
— Put together by connectors.

= Put all behavior diagrams on the
same underlying behavior assembly
model.

Behaviors as Composite Structure

act PreventLockup [Activity Diagram])

Property

Property | ™~ __ _ __

\9 : o ke
— _TraiLusi — dl:Tractfj m1:Brake
Detectr Modulator
j
Connector - m

detTrkLos()

sd ABS_ActivafonSequence [Sequence Diagram])

Activity I<:|
P r O p e rty \ sendSignal()

modBrkFrc(traction_signal:boolean)g
stm TireTractic)\[State Diagram]|) >

modBrkFrc()

\1, (—LossOfTractionﬂl
sendAck()
Gripping] [Slipping] <

LRegainTraction—) Interaction
i/

Connector / State Machine Connector

-

Behavior as Timing Constraints

4 . N
TakePicture

Model
. J

| Happens before
Things Behavior — - Ve
Being Focus T |—|(S ,,,, i
Modeled Shoot T §\ — ,£ —
(MO) Take Picture + | S 8 l /’l l

\‘\ /")
Happens during Time

= Behaviors model “things” happening over time.
— With temporal relations (time constraints) between them.

Behavior as Timing Constraints

4 . N
TakePicture

Model
Things Behavior
zeing ocus il am
Modeled Shoot T (‘ — —)
(MO) Take Picture + | : | :
>
Time

= The TakePicture occurrence on the right does
not follow the behavior model.

Behavior as “Composite Timing”

(])
Part-whole ._| TakePicture Part-part
Model N /

Things Behavior 7 Part—Bart
Being Focus T I_Ik """ I_I/'/
Modeled Shoot T é\ — ,4 —
(MO) Take Picture 4 f—— : // : :
\\ //)
Part-whole fime

= Composite structure relations are temporal:
— Part-whole = happens during.

10
— Part-part = happens before.

Behavior as “Composite Timing”

Model class TakePicture J stepl
(M1) > Focus
—>| stepl: Focus

Property/ zmensBefore

(whole-part) _——>>|: HappensBefore
step2
Connector step2 : Shoot <> Shoot
(part-part)
Things Not instance specs
Being TakingPic1l: TakingPic2:
Modeled
(MO)
stepl | :Happens _|step2 stepl | :Happens _|Step2
Focusing | Before | Shooting Focusing | Before | shooting

DuringTP1: /t\ DuringTP1:| |DuringTP2: /I\ DuringTP2:

Focusing before shooting in same taking picture “

Model and Things Being Modeled

(TakePicture
Model
_ ¢ /=\)
Things Behavior ',: '\‘
Being Focus T b— o B
Modeled Shoot + Q g|_| :"’ \‘ Q‘sl_l
(MO) Take Picture + | }' \. |
>
Time

= Dashed arrows between M1 and MO
mean 12

MO - M1 Synonyms

rTakePictu re

Classified by e w

Modeled by ~ A
Specified by | ™
Th?ngs Behavior 1 - :: ‘.‘ L
Conforms to 2on9 Al g Gy / gg,_l
(MO) R (\
FOIIOWS ake Picture | | | 5
Time

Satisfies (logically)

Not quite: Instance of (in the OO sense)
Not at all : Execution of (in the software sens®)

Behavior: What’s Being Modeled?

Real,

Simulated, Focus

or Desired 3/15/09 10-11pmET :
Things Being ———

akePicture
Modeled (MO) 3/15/09 10-12pmET :
Shoot
Not instance 3/15/0911-12pmET :

specs.

= “Things” that occur in time
— Eg, taking a picture, focusing, etc.
— Not “behaviors”, “actions”, etc.

14

Behavior: What’'s in Common?

Standard .
Model Library § "appens Behavior happens
Before Occurrence During-t
o A
| 1
| I
| |
I happens
BN Focus
Things Being TakePicture 3/15/09 10-11pmET :
Modeled (MO) 3/15/09 10-12pmET : happe”SBefore\l,
> Shoot
happens| 3/15/0911-12pmET :

During-!

* They happen before or during each

other.
— Construct M1 library for this.
— Use it to classify things being modeled. ~

Behavior: Use Library

Standard)
Model Librar happens Behavior happens
y Before Occurrence ¢IDuring™t
{subsets}
TakePicture
User Model
n : HappensBefore
(M1) stepl: Focus >{step2: Shoot
7
b AN /

| /

| |

! tepl

N — Focus
Things Being \ 3/15/09 10-11pmET :
TakePicture \
H Bef
Modeled (MO) 3/15/09 10-12pmET : AN - apReEls eore\l,
step
Shoot
3/15/0911-12pmET :

= Specialize library classes and
subset/redefine library properties.

Behavior: Too repetitive at M1?

- - t pe
l type Association él gwnedt
onnector
Metamodel % o owned e
perty
(M2) Class [@— | Property Connector
4 4 4 %edefines} 4
ownedStep fromStep
Behavior ; Step Succession
- toStep
A\ - A
g ’d I
] / "
I’ TakePicture
User Model , 7
M1 : HappensBefore//
(M1) stepl: Focus >|step2: Shoot
o7
A e
||
: I
: : \ stepl
Things Being v > 3/15/09F(1)ocijlS ET
-11pm .
Modeled (MO : \
(MO) TakePicture M HappensBefore\l/
3/15/09 10-12pmET : Nten2
step
> Shoot
3/15/0911-12pmET :

= Capture M1 patterns in M2 elements.
— Tools apply patterns automatically.

7

Benefits: Original Problem

= Flexibility in using metamodels

— Add metaelements as needed to simplify
library usage.

= Many metaelements become synonyms

— Application / method / diagram-specific
terminology sharing same semantics.

— M2 actions, states, etc, => M1 happensDuring
= Learning UML and building analysis tools
for It Is easler

— Due to shared semantics for variety of
modeling language terminology.

Benefits: Expressiveness

Model Focus |Q— MultiFocus
(M1) rTakePicture) TakeSpecialPicture
<]— Multi
o oo 1o
A v‘~\ /?\
I = Sso i
Behavior |, ____. T W R S— X
] 1] 1
Things Log —
Being Shoot (7|—| — —
Modeled Focus — g\
“~HappensBefore
(MO) MultiFocus (\ — PP
\\
Take Picture | | —x |} l
\‘\\ .)
HappensDuring Time

= Constraints are inherited in UML
— Including temporal constraints.

19

Benefits: Expressiveness

Event \

fTakePicture \I)

button
Press
Focus] Shoot O
: Exposure ,\ : Exposure
\ _J

\ Object flow

= Combine activity and state machines.

— States and actions happen during their
“containing” occurrences, ordered in time,,

Benefits: Modeled Semantics

= UML semantics Is written in free text

— Specifying an execution procedure for
activities and state machines:

Tokens are offered to an ActivityEdge by the source ActivityNode of the edge. Offers propagate through ActivityEdges
and ControlNodes, according to the rules associated with ActivityEdges (see below) and each kind of ControlNode (see
sub clause 15.3) until they reach an ObjectNode (for object tokens) or an ExecutableNode (for control tokens and some
object tokens as specified by modelers, see ObjectNodes in sub clause 15.4). Each kind of ObjectNode (see sub clause

15.4) an
accepte,
Activity]
which a

The processing of Event occurrences by a StateMachine execution conforms to the general semantics defined in Clause
13. Upon creation, a StateMachine will perform its initialization during which it executes an initial compound transition
prompted by the creation, after which it enters a wait point. In case of StateMachine Behaviors, a wait point is
represented by a stable state configuration. It remains thus until an Event stored in its event pool is dispatched, This
Event is evaluated and, if it matches a valid Trigger of the StateMachine and there is at least one enabled Transition that
can be triggered by that Event occurrence, a single StateMachine szep is executed. A step involves executing a
compound transition and terminating on a stable state configuration (i.e., the next wait point). This cycle then repeats
until either the StateMachine completes its Behavior or until it is asynchronously terminated by some external agent.

—and trace classification In interactions:

Clause 13, Common Behaviors, describes the general semantics of the execution of Behaviors. Interactions are kinds of
Behaviors that model emergent behaviors, as defined in sub clause 13.1. As discussed in sub clause 13.2.3, the
execution of a Behavior results in an execution trace. Such a trace is a sequence of event occurrences, which, in this
clause. will be denoted <el, e2. en>. Each event occurrence may also include information about the values of all
relevant objects at the point of time of its occurrence.

The semantics of an Interaction are expressed in terms of a pair [P, I], where P is the set of valid traces and 1 is the set of
invalid traces. P ! I need not be the whole universe of traces. Two Interactions are equivalent if their pairs of trace-sets
are equal. The semantics of each construct of an Interaction (such as the various kinds of CombinedFragments) are

-

= Mod

el In standard libraries.

21

Benefits: Classification Semantics

= Standard execution models for UML
—fUML, PSCS, PSSM

— Procedures that create a behavior occurrence
« Conforming to a UML model.

— Don’t tell whether
« An existing behavior occurrence conforms.
e Tools are producing correct occurrences

= Classification does is the opposite

— Tells whether an existing behavior occurrence
conforms to a model.

— Doesn’t say how to create an occurrence.

— Execution engines are constraint solvers. 2

Overview

= RoadMap

= Motivation
— Behavior, review
— Interactions, review
— State machines Part 1, review
— State machines Part 2, requirements

= State Machines Solution, Part 2
1. Objects reacting to stimuli

2. Synchronizing state changes
3. Managing stimuli

= Summary

28

Object _

Interactions

act PreventLockup [Activity Diagram])

:Modulate
BrakingForce

Problem

sd ABS_ActivationSequence)

d1:Traction
Detector

1

m1:Brake
Modulator

Flow
Activity
ibd [Block] Anti-Lock Contraller [Basic U
d1 : Traction
Detector
() A 4
/ m1 : Brake
Modulator
SysML Internal
Block Diagram
ltem Flow g

detTrkLos()
1
sendSignal()
modBrkFrc(traction_signal:boolean)g
>
modBrkFrc()
sendAck()
<€
| |
Interaction

Message

29

Interactions Requirements

1. Between things that outlive interactions.
— Objects have many interactions over time.
— Not just between steps in an activity.

2. Interactions are reusable and composable.

— The same kind of interaction might be used In
many user models and

— contain many other interactions ordered in time.

3. Interacting objects have “mailboxes”.

— Things being exchanged leave and arrive at
specified places in the interacting objects.

— Aka, output/inputs.

30

Interactions Solution (Part 1)

(between things that outlive interactions)

* Flows happen in time.
— They are behaviors.

= Start when an entity begins flowing.
— Leaves output pin of an action.
... execution on a lifeline.
... SysML out flow property.

= End when the entity stops flowing.
— Arrives at input pin of an action.
... execution on a lifeline.
... SysML in flow property.

31

Standard
Model Library T

Model
(M1)

Transfers (M1)

Behavior
Occurrence

>

involves

ZP

*
{subsets}

Transfer

targetThin%'

sourceThin%.

transferredThing

Y

Any
Thing

>
*
{redefines}? [1]

ZF A A

I I

transferredThing I |

User Model < Product Transfer >| Product | 1 :
I

AN ’:‘ I I

1 1 } }

l transferredThing 1 : :

Things > Stove234: | |

Being Product Transfer sourceThing ' :

Modeled 3/15/09 10-12pmET : >| Store6s4: |

(I\/IO) targetThing '

> John’sHouse:

32

Interactions (M2)

owned
Class [® Property
*
% {subsets}
. involves\
SA¢
Behavior |@ yy Propertyv\\ erty
I . N
I N
% I {subsets} L \\
Metamodel P I_participant S
. I~ Property *] s |
(M2) Interaction ! N N
/typeofT ||ngTransferred N N
" > CIaS,\\l N\
* A\
) ! AN\
! \ ’ \ ’
-~ | \\\\ l \\\ \\\\
H \ \ \
: Behavior kN o ,>| }}
involve
. | Occurrence = A
27 /
Standard < : é {Subsets /¢¢¢/I ////// /////
. _==A\ /y 2
Model Library targetThmg«“‘r A0y . J
_—CATi 7
sourceThing T "9 ///
Transfer | | 7 _===\ [_______
Model I e >
(Ml) transferredThin M1 property at tail of
arrow is value of M2
- [1..%] roperty at head of
4 {redeflnes} tph . %rr(;\//v
f .
transferredThing *Not instance links*
User Model = Product Transfer > Product 33
-

type

Flow Steps

< <— type —
Class POW”ed Property |role | Connector —>]Association
roperty A
<> lll " Lll A
{redefines} I
I\:/Ieztamodel 4 o 0Wnedstep fromStep 4 :
(M2) Behavior < * Succession I
|
5" o -
redefines , I
Interaction té% - Flow I “ I
A "™ A ! . !
I | L ! :
.] 1
CapturePicture b :l | happens
_——— — — — I Y A I Before\L
. ' i I /) I)
Ufcntl : Flight dConfirmation | L 4qp - miight | | Behavior
Control | - ’: Database | | | Occurrence
Model == - === |1
: Happens
(M1) P - Before ,I 4
| SC. y
Command p» :- _SFiaEefrilft_ ! T Picture B _ ’ Transfer
————" \)
: HappensBefore ¥
Standard
User Model Model Library

Overview

= RoadMap

= Motivation
— Behavior, review
— Interactions, review
— State machines Part 1, review
— State machines Part 2, requirements

= State Machines Solution, Part 2
1. Objects reacting to stimuli

2. Synchronizing state changes
3. Managing stimuli

= Summary

35

States of What?

= Objects, based on properties
— Person in married state = has a spouse.

= Behaviors, based on past behavior

—Vending machine in dispensing state after
receiving selection and money states.

— UML states are mostly of behaviors ...
o ... tied to objects.
 Weakly include object state invariants.
= Both kinds can be Iin “machines” that
react to external stimuli.

36

States of Behaviors

Behavior

\ sm TakePicture)
Focus Shoot

mthe} \ . In the

“state of focusing” “state of shooting”

= States of behaviors = steps in behaviors
— Properties typed by other behaviors.

= Part 1 assumed stimuli arrived dlrectly
at behaviors.

State Machine Problem, Part 1

sm TakePicture)

A
L State

Transition
Trigger

act TakePicture)

.
Accept J kCaII Behavior

Event Action Action

38

State Machine Requirements, P1

1. Must selectively react to stimuli (“events”).
— Based on kind of stimulus and ...
— ... current & previous stimuli/reactions (“states”)
2. Must simplify reaction behaviors, splitting
them up ...
— by state and between states (transitions).
— Wwithin states.

3. Must react to past events

— Can have complicated reaction rules to events
In the past. 39

State Machine Solution (Part 1.1)

(Reacting to stimuli)

= UML events =things “arriving” at objects
— Signals, operation calls

— Not events happening externally
 Except unmodeled “changes” to anything.

= Treat as ends of transfers targeting
objects.

— Recelver doesn’t specify sender.

40

UML Events = Ends of Transfers

happens _
Before L 4D| AnyThing
Standard d happens Behavior sourcelr Ttarget Ttransferred
Model Library Duringl—>{ Occurrence
foubsets) <}—1 Transfer IQ
end —>
Model - ZF
M1 r .
(M1) TakePicture stepX| Expose
CmdXfer
2 —>] stepl: Focus . HappensBefore > step2: Shoot
= transferred
User Model < o
S| e == ExposeCmd
o | stepX : ExposeCmdXfer 0-11 target
=3 P ———— > self
T end : |
.
) A
| stepl
P Focus
tepX 3/15/0910-11pmET:
. . step
Things Being _ S| ExpCmdXfer #7453 j\
Modeled (MO) TakePicture - end = 3/15/09 10:45pmET == , :HappensBefore
3/15/09 10-12pmET : target :HappensDuring
step2
P > Shoot 41
3/15/0911-12pmET :

State Machines (M2)

<type fromStep
Metamodel |Behavior owned| Step wael]” | SUCCESSION Step || Interaction
@ — = < |
(M2) 7 AP 5 R A Ape A
{subsets} g frcnState State trigger I
: owne <— te |
State Machine ‘—State State —l— Transition Flow :
A A A / I
: l ' 7 :
' TakePicture | 4 stepX| Expose
; : a 2| cmdxfer
. 4
2r—>| stepl: Focus = HappensBefore 131 stes2 : Shoot
Model g 7 transferred
0 el
(M1) s|] W Am—mmmmmmm—————— — ExposeCmd
o I stepX : ExposeCmdXfer ¢ l| target
o e - ———— self
T end
. e e e e e e e e e e - - = I
=======2>

= Transitions are successions that ...
— go out of steps ...
— that identify interactions (triggers) ...
— that end during and target the machine.

M1 property at tail of
arrow is value of M2
property at head of
the arrow.

Not instanc@®inks

State Behaviors (M1)

-

happens Behavior happens
Before L) Occurrence &—During
1 ; —8 |§ {subsets}
c (]
(0] 0
Sta_ndard - ’ ’
Model Library
StateOccurrence
- HappensBefore : HappensBefore .
(M1)

-
4 entry

. statel . {redefi }
User Model TakePicture @ Focusing [@ e == Focus
g
X A A
] I I
Occurrences TakePicture statel Focusin entry E
& g P oCus
(MO) 3/15/09 10-12pmET : 3/15/09 10-12pmET : 3/15/09 10-11pmET :

= State occurrences:
— Are behavior occurrences typing state properties... 4,
— with exactly three step properties ordered in time

State Machine Problem (P1.2)

sm TakePicture)

d

WB&EXxpose
. Cmd Set
Compe_tmg_/ WhitePoint
Transitions
act TakePicture) __________ .
’ \
|
, Expose| !
| |
1 I
'\ WB&Expose | ! Set
I Cmd I WhitePoint
== A1
Interruptible —— <_ Interrupting ——

Region Edge

Competing Transitions (M1)

acc;‘eptable

{subsets} *
Standard StateOccurrence T Transfer
Model Library accepted

AN 0.1

{ Accepted interaction ends
before the other acceptable

{ Must have value (link) iff ‘j { Must have value (link) iff
interactions do. } }

statel.accepted = steplT1. statel.accepted = steplT2. }

) / !
Model \ A
(M1) Y TakePicture "
\ / ’
\ . Happe, LBefore 5.1
> state,l : Focusing bb 1'9 state2 : Shooting
—pexit: \ !
= S \ / l]\: HappensBefore
= ..8 accepted : /
User - al m endl o ceptable : L state3 : Setting
Model : Happens L= M . HappensBefore 1 WhitePoint
tar et\l/ subsets
: IJ- ————————————— target
self | steplT1: ExposeCmdXfer - ¥ lﬁ
————————————————————————————— — target| Self
steplT2 : WB&ExposeCmdXfer 0-1

Competing Transitions (M1Lib/M2)

fromState :
) d < State trigger
owne te
State Machine [@—-—=-1 State ——| Transition ﬁ S Flow
Metamodel & LN .
M2 Constraint | eventAccept \\ \
() N Condition \ \
. \ \“
- I acce‘ptable \\ \
. . \
{ Accepted interaction ends T{subsets} * \ \
before the other acceptable State Transfer 1 \
interactions do. } accepted
: Occurrence ! \
< 5 0.1 I \
Standard _ = -{ Link must b the value of a L
Model I —p exit : _-=" state transition going out of the
.O € £l o _ state property have self as valu,2,
=l & accepted : happens ave SEl
L|brary s| @ Before 0.1 where the transition’s trigger flow
~ = Hm 'e”dl acceptable: [€— {redefine;.s} has a value and = self.accepted. }
Model : Happens
(M1)

= Library constraints inherited or reused
— Acceptable/exit timing moved to library. | gor all
— Transition constraints use M2. models

— Commonly used acceptance constraints. For mdtels to
use as needed

State Machine Solution (P1.3)

(Reacting to past events)

= So far, states are only triggered by
events that arrive during the state.

= Want to enable states to be triggered by
events that arrive before the state.

— Loosen constraints against this.

47

Past Events (M1)

acgeptable

t n r ‘r(subsets} *
S a. dard StateOccurrence Transfer
Model Library accepted
Model A 0..1 0..1
(M1) .
TakePicture
: 0.1
statel : Focusing _ HappensBefore >| state2 : Shooting
—peXit :
e e l]\: HappensBefore
U % accepted :
ser) .end . state3d : Setting
table : . .
Model B : Happens I_accep 2 : HappensBefore Oi WhitePoint
subsets
target\l/ 1
self \—: step1T1: ExposeCmdXfer ©- 1y
I"step1T2 : WB&ExposeCmdXfer 01

= Events arriving before state are acceptable.
— But each event can only be accepted once.

Past Events (M1 Library / M2)

<type { Must be typed by M1 State

Behavior owned | Step Occurrence or a specialization. }
Metamodel ZF ® St ZF ’
/
(M2) 1! .
) owned State | J{ MO values (state occs) must
State Machine ‘m have the same pastEventsOK
pastEventsOK : Boolean as self. }
- acceptable
{ Holds exactly when State A >
pastEventsOK = false } foubsetsh T
ransfer
Standard - S Occurrence accepted
\ pastEventsOK : Boolean
Model < A it 0.1
Library 2:| S
= % = accepted :
Model 'DHprQ:ns 'e”dl acceptable :
(M1))

= HappensDuring redefined to apply as
Indicated by metamodel boolean. 49

Overview

= RoadMap

= Motivation

— Behavior, review

— Interactions, review

— State machines Part 1, review

— State machines Part 2, requirements
= State Machines Solution, Part 2

1. Objects reacting to stimuli

2. Synchronizing state changes

3. Managing stimuli

= Summary

50

Behaviors of Objects

Camera

sm TakePicture)

Model

= Objects behave.
— UML “classifier behaviors”.

= States are still states of behaviors ...

= ... reacting to stimuli arriving at objects.
— Same as arriving at behavior, except ... >

State Machine Problem, Part 2

Camera

sm Take3DPicture)

Focus |ExposeCmd Shoot ®
Lensl Lensl

MOdG' Focus | ExposeCmd Shoot
(M1) Lens2 Lens2
act ProvideLightJ

Measure Expose
‘%I Light H cmd %I Flash I%@

= Multiple object behaviors can react
to the same stimulus (compare to UML)z

O

State Machine Requirements, P2

1. Must enable objects to react to stimuli.
— Via behaviors “of” objects.

2. Must synchronize state changes between ...
— Machine regions (part of “run-to-completion™).
— Multiple behaviors for the same object.

3. Must manage multiple stimuli arriving at the
same object.

53

Overview

= RoadMap

= Motivation
— Behavior, review
— Interactions, review
— State machines Part 1, review
— State machines Part 2, requirements

= State Machines Solution, Part 2
1. Objects reacting to stimuli

2. Synchronizing state changes
3. Managing stimuli

" Summary

54

State Machine Solution (Part 2.1)

(Objects reacting to stimuli)

= Objects occur In time also.

— With different terminology (creation,
destruction, etc).

= Behaviors can specify an object to be
target of transfers.
— Assume these are behaviors “of” the object.

— Multiple behaviors can specify the same
object.

55

Objects Reacting (M1)

happens
Occurrence Before
JaN happens /\
Standard During
Model Library ? involves
Behavior * |<S“bse‘s}T * Object
Occurrence behaviorOccQff Occurrence
Model L * 0.1 4
(M1) _
Camera

- Take3DPicture

stepl.1: Focusl1 [—HappensBeforey

stepl.2: ShootL1
User

Model)

step2.1 : FocusL2 [—appensBefore s

step2.2: ShootL2

self

I stepX : ExposeCmdXfer © 1| target, = — — = — — =
endp- P ﬁ behaworOccOf. =

Objects Reacting (M2)

owned
Property [€property Class
: N
Metamodel INVONES s A
operty |
(M2) LY I
\
\ |
_ \ I behaviorQf _
Behavior A\ I 7A—> Object
\ | /0.1
| \\\\ | /// ¢
\ ///
! \\\\ I i I
Model ; A1 !
0de : ') \\\\\ / hap|'ens
(M1) ! ccurs\\\?nce i E Bef(:re
I
I AN haphens | ZN\ l
Standard d I Duritg I I
Model Library ' ir;\volvzf's '
. I .
Behavior * |‘S“bse‘s}ﬁ/ * Object
Occurrence behaviorOccQf| Occurrence
* 0..1

57

Overview

= RoadMap

= Motivation
— Behavior, review
— Interactions, review
— State machines Part 1, review
— State machines Part 2, requirements

= State Machines Solution, Part 2
1. Objects reacting to stimuli

2. Synchronizing state changes
3. Managing stimuli

= Summary

58

Synchronized Regions (M1)

Camera

: Take3DPicture

stepl.1: FocusL1]|-HappensBetoreof 11 5. Shootl1
—entry:
exit :
f‘tceptable:
L s

Model
(M1)

self

[tep2.1: HlocusL2]-HapRensBeRdle gl o) 5 - ShootL2
entry:
—3 exit : =
acceptable

: HappensBefore

subsets
e target= = = = = = = =

! stepX : ExposeCmdXfer 0- 1%‘behaworOccOf

= Transitions triggered by same event.

— Entries happen before exits across states aE[DQSO.
— Other timing not restricted in UML.

Synchronized Regions (M1, Lib)

{ affects->forall(sol, so2 |

[Object sol.entry happensBefore so2.exit) }
Occurrence I’
Standard - \]/ | \L ,
Model Library *\y7/behaviorState acceptable * /allAccepted
{subsets} *
StateOccurrence affects accepted Transfer
Model - AR R 07
(M1) B D
Camera
- Take3DPicture
stepl.1: Foct|sL1}--HappensBefore .
User Model P Slstepl.2 : ShootlL1
acceptable:

) : f If
step|.1: Focusl 2}-—HaPRENsBEONes]qi0n) 5 - Shootl2 S€
accef|.able : ~

subsets

Y [N P 70 I2] el

60

Objects, Multiple Behaviors (M1)

Camera

- Take3DPicture

stepl.1: FocusL1|-HappensBeforest 1 5. shootl 1
acceptable:
step].1: FocusL2jHappensBeforesf o> 5 . ghootL 2
accef|.able :
Model subsets
e == - - targetpT T T T T T T -
(M1) ,ster ExposeCmdXfer *4—— behaworOccOf

. ProvideLight

stepl : MeasureLight |: HappensBefore>
acceptable :

subsets

——— = === targgtl
| stepX : ExposeCmdXfer ¢ lﬂ,ﬂmehaworoOccOf'

o - - - o o o o e e e o = — e - - -

= Multiple behaviors reacting to same event.
— Treated as regions (compare to UML).

Overview

= RoadMap

= Motivation
— Behavior, review
— Interactions, review
— State machines Part 1, review
— State machines Part 2, requirements

= State Machines Solution, Part 2
1. Objects reacting to stimuli

2. Synchronizing state changes
3. Managing stimuli

= Summary

64

UML Event Handling

Camera
sm TakeSDPicture)

Eengi o > fgn t ((
Model | }---To T - < ¢
(M 1) Focus | ExposeCmd Shoot ((

Lens2 Lens2 (

¢
| act ProvideLight J (
._)[Light H Cmd _>[F'a5h]—>© ‘_ Event
pool

= Objects have a single “pool” of events.
= One event at atime Is

— Checked against transition triggers ...
 Matching transitions are taken.

— Removed from the pool ..
« Whether or not it triggers tran5|t|ons (exception Iater)

Onto-izing UML Event Handling

= UML describes an event handling procedure
(execution engine).

= Classification modeling
— Glves conditions required of valid executions.
 No procedure for handling events.

— Triggers satisfy (match) these conditions, or not.
 Events are not removed from a pool.

— More complex event handling procedures = more
complex classification conditions.

66

Model
(M1)

Standard
Model Library

Pool as Queue (M1)

so2.accepted.end.occursAt > sol.accepted.end.occursAt)

{ forall(so1,s02 |
so2.exit.start.occursAt > sol.exit.start.occursAt =>
}

o
Object ,/

Occurren/r/,e

7
*\l,/behaviorState acceptable *J//aIIAccepted

{subsets }*x

affects accepted

* 0.1

StateOccurrence Transfer

= UML: Check events in the order they arrived.

= Accepted events “arrive” in same order as

transitions out of state occs that “accept” them.

— Ends of transfers to self identified as accepted by state
occurrences must be in the same time order as those

occurrences are left.

67

Pool as Queue (M2)

. { MO values (object occs) must have
Metamodel Object — the same acceptEventsinStateOrder
as self. }
(|\/|2) acceptEventsinStateOrder: Boolean
N
1
Object Occurrence
Model
(M 1) acceptEventsinStateOrder: Boolean
7
/ *\l,/b havi *
/ ehaviorState acceptable {//aIIAccepted
/ A
Sta.r] d ard / 1){subsets} *
Model Library // StateOccurrence affects accepted Transfer
/ * 0.1

AN

{ acceptEventsinStateOrder =>
behaviorState->forall(so1,s02 |
so2.exit.start.occursAt > sol.exit.start.occursAt =>
so2.accepted.end.occursAt > sol.accepted.end.occursAt) }

= Constraint applies as indicated
metamodel boolean.

Y

68

Deferrable Events

?

= UML states can indicate some -
events remain in the pool. [g]

request/defer

— Even though they were checked l o
against transitions triggers. -
= Transfers to objects that do [re“““”“f“]
not violate classification J -
conditions.
— Deferral specified as exceptions [Operational J

to normal conditions. R

request/handleReq()
69

Deferrable Events (in Queuing)

Standard
Model Library

Model
(M1)

{ forall(so1,s02 |

so2.exit.start.occursAt > sol.exit.start.occursAt =>
(so2.accepted.end.occursAt > sol.accepted.end.occursAt
or (sol.start.occursAt < so2.accepted.end.occursAt
and sol.deferrable->includes (so2.accepted)))) }

7

Y
. /
Object ,
Occurrer;/;e
7
\l,/behaviorState acceptable ___\/allAccepted
A >]
{subsets} *
affects accepted
StateOccurrence - o? Transfer
deferrable

*

= Transfer arrival condition loosened
for deferrable events.

70

Deferrable Events (in Past Events)

Standard
Model Library

Model
(M1)

Object Occurrence

O..l\l//behaviorStateOf

*Jdy/behaviorState

acceptable

*\i /allAccepted

State {subsets} ?
S Occurrence accepted
pastEventsOK : Boolean 0 1>
o3| o[—pexit: deferrable
c<| o .
= % S accepted : "
152
/ g .end acceptable:
, :Happens |
/

{ Holds when pastEventsOK = false except if
behaviorStateOf.behaviorState->forall(so1l |
(self.start.occursAt > sol.start.occursAt

AN

and sol.start.occursAt > so2.accepted.end.occursAt

and sol.deferrable->includes (so2.accepted)))) }

Transfer

= Past event condition loosened for
deferrable events.

71

State Machine TBD (Post P1)

= More complex event handling.

— Completion events
= Event content
= Transitions

— Guards

— Internal

= Pseudostates
— State entry / exit points
— History, etc.

= Submachine states

12

Overview

= RoadMap

= Motivation

— Behavior, review

— Interactions, review

— State machines Part 1, review

— State machines Part 2, requirements
= State Machines Solution, Part 2

1. Objects reacting to stimuli

2. Synchronizing state changes

3. Managing stimuli

= Summary

73

Summary

= Objects react to stimuli via
— Transfers targeting objects.

— Behaviors reacting to these transfers arriving.
 For any kind of behavior that reacts to events.

= State changes synchronized by

— Constraining exit behavior timing across
regions and behaviors.

= Stimull managed by timing constraints on
events and state occurrences.
— Same effect as UML event processing (mostly).

= Speeds learning and analysis integration,

More Information

Intro to Behavior as Composite Structure
— http://doc.omg.org/ad/2018-03-02

Interaction as Composite Structure
— http://doc.omg.org/ad/18-06-11

Object-orientation as Composite Structure
— http://doc.omg.org/ad/18-09-07

State Machines as Composite Structure, Part 1
— http://doc.omq.org/ad/18-12-09

Earlier slides (more onto, includes interactions)

— http://conradbock.org/bock-ontological-behavior-modeling-jpl-
slides.pdf

Paper: http://dx.doi.org/10.5381/j0t.2011.10.1.a3
Application to BPMN: http:/conradbock.org/#BPDM
KerML: Contact Chas Galey charles.e.qaley@Imco.com

75

http://doc.omg.org/ad/2018-03-02
http://doc.omg.org/ad/18-06-11
http://doc.omg.org/ad/18-09-07
http://doc.omg.org/ad/18-12-09
http://conradbock.org/bock-ontological-behavior-modeling-jpl-slides.pdf
http://dx.doi.org/10.5381/jot.2011.10.1.a3
http://conradbock.org/#BPDM
mailto:charles.e.galey@lmco.com

	State Machines as�Composite Structure:�(Onto)Logical State Machines�Part 2
	Overview
	Behavior as Composite Structure Presentation Stack

	Motivation, Behavior, review
	Original Problem
	General Solution
	Behavior as Composite Structure
	Behavior as Timing Constraints
	Behavior as Timing Constraints
	Behavior as “Composite Timing”
	Behavior as “Composite Timing”

	Model and Things Being Modeled
	M0  M1 Synonyms
	Behavior: What’s Being Modeled?
	Behavior: What’s in Common?
	Behavior: Use Library
	Behavior: Too repetitive at M1?

	Benefits
	Benefits: Original Problem
	Benefits: Expressiveness
	Benefits: Expressiveness
	Benefits: Modeled Semantics
	Benefits: Classification Semantics

	Interactions Review
	Interactions Problem
	Interactions Requirements
	Interactions Solution (Part 1)�(between things that outlive interactions)
	Transfers (M1)
	Interactions (M2)
	Flow Steps

	State Machine, Part 1 Review
	States of What?
	States of Behaviors
	State Machine Problem, Part 1
	State Machine Requirements, P1
	State Machine Solution (Part 1.1)�(Reacting to stimuli)
	UML Events = Ends of Transfers
	State Machines (M2)
	State Behaviors (M1)

	State Machine Problem (P1.2)
	Competing Transitions (M1)
	Competing Transitions (M1Lib/M2)

	State Machine Solution (P1.3)�(Reacting to past events)
	Past Events (M1)
	Past Events (M1 Library / M2)

	State Machine, Part 2 Requirements
	Behaviors of Objects
	State Machine Problem, Part 2
	State Machine Requirements, P2

	State Machine Solution, Part 2
	State Machine Solution (Part 2.1) (Objects reacting to stimuli)
	Objects Reacting (M1)
	Objects Reacting (M2)

	State Machine Solution (Part 2.2) (Synchronizing state changes)
	Synchronized Regions (M1)
	Synchronized Regions (M1, Lib)
	Objects, Multiple Behaviors (M1)

	State Machine Solution (Part 2.3) (Managing stimuli)
	UML Event Handling
	Onto-izing UML Event Handling
	Pool as Queue (M1)
	Pool as Queue (M2)
	Deferrable Events
	Deferrable Events (in Queuing)
	Deferrable Events (in Past Events)

	State Machine TBD (Post P1)
	Summary
	More Information

