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General Problem

= UML has three behavior diagrams.
— Activity, state, interaction.
= Very little integration or reuse between
them.
— Three underlying metamodels.
— Three representations of temporal order.

= Triples the effort of learning UML and
building analysis tools for It.



General Solution

= Treat behaviors as assemblies of
other behaviors.

— Like objects are assemblies of other
objects.

= Assembly = UML internal structure
— Pleces represented by properties.
— Put together by connectors.

= Put all behavior diagrams on the
same underlying behavior assembly
model.



Behaviors as Composite Structure

act PreventLockup [Activity Diagram] )

Propert
/ perty

sd ABS_Activatio/Sequence [Sequence Diagram] )

v

Property

on oe
e d1:Traction ml:Brake
j Detector Modulator
1]
Connector g 1

detTrkLos()

Activity I<:|
Pro pe rty \ SendSignal()

modBrkFrc(traction_signal:boolean)
>

stm TireTracti(}\[State Diagram| ) modBrkFre()

\1, (—LossOfTractionﬂ
sendAck()
Gripping J ( Slipping J <
; j 71 .

LRegainTraction—) Interaction
i/

Connector / State Machine Connector
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Behavior: What’s Being Modeled?

Real,

Simulated, Focus

or Desired 3/15/09 10-11amET :
Things Being ————

akePicture
MOdeIed (MO) 3/15/09 10-12pmET :
Not instance Shoot
3/15/0911-12pmET :

specs.

= “Things” that occur In time
— Eg, taking a picture, focusing, etc.
— Not “behaviors”, “actions”, etc.




Behavior: What's in Common?

Standard ;
Model Library § Mappens Behavior happens
Beforel s Occurrence IDuring
(M1) A A
| |
I |
| |
I happens
SR 5 Focus
Things Being TakePicture 3/15/09 10-11amET :
Modeled (MO) 3/15/09 10-12pmET : happe”SBefore\l,
> Shoot
happens| 3/15/0911-12pmET :
During-!

= They happen before or during each

other.
— Construct M1 library for this.
— Use it to classify things being modeled. °



Behavior: Use Library

Standard )
Model Librar happens Behavior happens
y Before L Occurrence During-
(M1) <
? {subsets}
TakePicture
User Model
~ : HappensBefore
(M1) stepl: Focus > step2: Shoot
7
- N 7
| /
I |
]
‘\ — 1) Focus
Thi Bei \ 3/15/09 10-11amET :
INgs Being TakePicture N
H Bef
Modeled (MO) 3/15/09 10-12pmMET : AN dRECNsBC Ore\l,
step2
> Shoot
3/15/0911-12pmET :

= Specialize library classes and
subset/redefine library properties. v



Behavior: Too repetitive at M1?

type
l type Association él gwned t
onnector
Metamodel v oowned ole
perty
(M2) Class [ | Property Connector
4 4 4 %edefines) 4
ownedStep fromStep
Behavior ; Step Succession
> toStep
A e A
] / '
] V4 -
I' TakePicture
User Model ; 7
M1 X HappensBefore//
(M1) stepl: Focus > step2: Shoot
o7
A K¢
1
I
| D
Things Being b - 1> Focus
Modeled (MO \ 3/15/09 10-11amET :
odeled (MO) TakePicture AR HappensBefore\l/
3/15/09 10-12pmET : Nteno
step
Shoot
3/15/0911-12pmET :

= Capture M1 patterns in M2 elements.
— Tools apply patterns automatically.
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Interactions Problem

act PreventLockup [Activity Diagram] )

sd ABS_ActivationSequence )
Modulate
BrakingForce
—_ _TraiLusi — d1:Traction m1l:Brake
Detector Modulator
I ]
Object _ H
FI ow detTrkLos()
Activity
sendSignal()
ibd [Elock] Anti-Lock Cortroller [ Basic U modBrkFrc(traction_signal:boolean>)-
modBrkFrc()
d1 : Traction
*7| Detector
sendAck()
=R 4
<€
=
m : Brake ! !
Modulator

Interaction

SysML Internal Message

Block Diagram

ltem Flow
13



Interactions Requirements

1. Between things that outlive interactions.
— Objects have many interactions over time.
— Not just between steps in an activity.

2. Interactions are reusable and composable.

— The same kind of interaction might be used In
many user models and

— contain many other interactions ordered in time.

3. Interacting objects have “mailboxes”.

— Things being exchanged leave and arrive at
specified places in the interacting objects.

— Aka, output/inputs.
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Transfers (M1)

Behavior ol D
Occurrence oS
AN
Standard ZF {Q *
Model Library 3 targetThin%. Any
- . Thing

sourceThln%.

Model franster transferredThing

(M1) >
4 {redefines}? [1*] ? /l\ /l\
| |
transferredThing | 1
User Model < Product Transfer >| Product | | I
I 1
N /:\ I I
1 | 1 |
l transferredThing 1 : :
Things >| Stove234: : ,
Being Product Transfer sourceThing I :
Modeled 3/15/09 10-12pmET : >| Store6s4: | |
(|\/|O) targetThing '

>

John’sHouse:




Interactions (M2)

owned
Class [® Property
*
% {subsets%
. iNnvolvesS<=
<«
Behavior | A Property S \\erty
% ',,' {subsets} * \\\\
I participant AN
Metamodel e TR A ..
(M2) Interaction ! N AN
/typeofT ||ngTransferred NN N
" > CIaS\\l N\
N
AN I ’ A N\ \\\\\\
1 ‘{\ 1 2 \\\
~ ] \ l \\\ \\\
. \ > | \
Behavior v ol i i
invo ves
Occurrence x ////5’ ///5’
Standard ZF tavses A
Model Library 7 targetThm L
sourceThln 17~ |7
Transfer == T —______
Model I B >
transferredThing |~ M1 property at tail of
(Ml) arrow is value of M2
*
) Z} {redeﬁnes}zr [1..4] [F {Jhrggfrr(tjx\//vét head of
transferredThing *Not instance links*
User Model < Product Transfer >| Product 16
-




Transfers Along Connectors?

act PreventLockup [Activity Diagram] )

JiL Property
Property I /
¥ ctloss sd ABS_Activat%Sequence )
/_ _TraiLusi — d1l:Traction m1:Brake
Detector Modulator
Connector — g 1
detTrkLos()
Activity T
Pro P el”[y — ;n(lj&gnalo
ibd [Block] An’[i-LDEWn’[rnller[ Basic U modBrkFrc(traction_signaI:boolean>)-
11 : Traction modBrkFrc()
I.'l.etectur
o sendAck()
A 4 L
mi1 : Brake H / !
Modulator )
/ / Interaction
Connector - SysML Internal Connector

Block Diagram

= Connectors are typed by associations.
— But transfers are behaviors.



Interaction = Behavior & Association

= Associlations and behaviors both have
objects that participate in them.
— Associations link their participants.

— Behaviors involve their objects.
 Interactions have lifelines.
e Activities have object nodes, partitions, etc.
 Behaviors have parameters.

= [nteractions are behaviors that are also
associations between their participants.
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Links (M1) & Associations (M2)

owned
Propert
Class [@® L
Metamodel A {)? Property
(M2) | — participant
1 | Association |0 Property
|
! 0 NN
| A —— [y ——
- ' G i =======>
Standard ”_H- M1 property at tail of
; < : linkedThing | Link arrow is value of M2
Model Library Anything (non-u/\uel A\ oroperty at head of
2. - the arrow.
Model ~ 4 - oubsets) ! ? *Not instance links*
- I
(Ml) conCam —/;’
-7 Camera i Controls
User Model = < ~ < |linkedc |/ Camera {redefines linkedTarget }
: Controller camCon linkedCon’ Controller {redefines linkedSource}
- I A
| 1
. . l . I .
Things Being  fcamera 34 [kedCam | jng 251 ; | linkedCenf cnr) 12
Modeled (MO) -
conCam1‘ / 1‘camCon
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Transfers as Links 1)

linkedThing
{non-unique}
Link
- ) et [2..7]
Standard | Behavior infolves
Model Library Occurrence [Ap A &

Z} Any
targetThing Thing
sourceThin

Model Transfer %
(Ml) transferredThing
transferredThing : :
User Model < Product Transfer >| Product | | I
I I
N ':\ I I
1 | 1 |
' transferredThing 1 : :
Things > Stove234: [ =~ |
Being Product Transfer sourceThing . !
o
Modeled 3/15/09 10-12pmET : > Store6s4: | |
(MO) targetThing I
> John’'sHouse:

20



Interaction Participants (M2)

... participant
Association [@ ” Property typeOfThingT
{redefines}
, | involves should be on
Behavior (@— //”— %‘“operty
I §§
% I;I ? \%% }
d L AN T T TTTe
Metamodel T | oo e vaineor
. N, N\
(M2) Interaction . N « | M2 property at head
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\\\ \\\\ \‘\\\\
~ ; \\\\ \‘\\\\ \\\\
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Link [T \ \
[2..%] ‘ I
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Model Library < Loccurrence |AN A S0
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targetThm%%/ Thidg /
=7 7
=== //
sourceThing=‘/ W/
Model Transfer 7
(M1) transferredThingl/‘/
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Connectors Reusing Interactions

owned
Propert
Rt zi;p L Property Class
{subsets}
Metamodel conowned o type T
(M2) Class (@ —1 Connector 2| Association
{SUbSmS}[ﬁ 4 %edefines} 4
< OV\: Flow —>| Interaction
A =
I )
U Model DeliverProduct : ‘I
ser vioae
I
. t . ProductT f )
(M1) pickupFrom : e ro/\uc ——— 13 deliverTo:
I
A I
1 |
. QickllgFrom
“ S| Store654:
Things Being Product Delivery del} rerTo
\ ) . .
Modeled (MO) 3/15/09 9-1pmET : >l JehnsHouse: Stove234:
\m transferredThing
)| Product Transfer
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Flow Steps

type
< q < type .
Class pronory| Property |role | Connector ——>| Association
roperty A
{redefines}
|
Metamodel 4 o 0Wnedstep arlierStep 4 :
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Flows & Out/Inputs (OF)

typeOfThing

Flowing

M1 property at tail of
arrow is value of M2

property at head of

the arrow.
*Not instance links*

Connector
[1..*] {ordered, Class
Flow 4_ non-unique}
ltem sourceQutputPropert

Metamodel Flow i [1..*] {ordered,

"'l non-unique} Property
(M2) I

i tgrgetlnputProperty>

Il \

oo [1..*] {ordered,

! \ non-unique}

—

I;I \\\\
Model Takef/icture\ Activity

// \

M1 / AN
(M1) stepl: Focus |/ p—— —]step2 : Shoot
out xrsl : Exposure//l Exposure \*Tin xfs: Exposure
N
I
TakePicture 3/15/09 10-12pmET :
Instances ist_eu st_erﬁI
(MO) Focus Occ 1: -ExposureTransfer | shoot Occ 1
out xrsl = Exp123 sl & in xfs = Expl123
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Flows & Out/Inputs (FP)

typeOfThing

Transferred Class
[1..*] {ordered,
non-unique}
Metamodel ltem sourceOutputPropert == >
1..*] {ordered, M1 property at tail of
M2 Flow A [ ord property
(M2) \Q\ non-uniquel | property arrow is value of M2
tar\\\etlnputProperty property at head of
A % (1. {ordered> the arrow.
A non-unique} *Not instance links*
:’:” \\\\\\
I \
CaptijrePicttye : Interaction
m_—_——_—_—_——=——=——= . r=-Emmmm—mm—mmm—_—m—_—— 1
Model Ifcntl : Flight Control !/ Conflrmatlo Se fdb Flight Database
:in confRec: Confirmation’i < Wout confSend : Confirmation!
(M1) | reenResCon L L ourcontgend  Confirmao ;
Command I Spacecraft ' Picture
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OO Problems in UML/SysML

= Encapsulated and “surfaced” behaviors
modeled differently.

— Namespace ownership for encapsulated
behaviors (methods).

— Operations for surfaced behaviors.

= Method specialization (“override”)
doesn’t use generalization / inheritance.

27



OO Problems in UML/SysML

= Interfaces (service “bundles”)

— Missing supported interactions.

 Expected order of operation calls, signal receipts,
flowing property values.

— Redundantly specified on both ends of
Interactions (eg, conjugation).
— Need ports to distinguish interfaces uses.

— Redundant model of behavior abstraction

o Specify input/outputs of surfaced behaviors (ie,
they abstract those behaviors).

 But UML interface realization not generalization.28



OO Requirements

1. Behavior encapsulation
—“Surfaced” behaviors (no steps)

2. Behavior inheritance

3. Protocols

— Expected order of using surfaced
behaviors.
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Properties of Objects
for Behavior Occurrences

Camera

. TakePic&Bkup

Model : Choose

: Backup
(M1) Subject
. : Happens
* Location /I\ Before
- Take Picture
Picture > - Store

= Values of these properties are executions

(occurrences, MO instances) of behaviors.
= For example, classifier behavior executions’



Connecting Behavior Occurrence
Properties Across Objects

Camera&DiskController

. Camera § : Disk
Model ~ |: choose . .
(M) ke < Subject . Finish [€—=— : Backup
Picture Picture 1\
> : Store

= Behaviors not encapsulated.
— Controller specifies “how” picture iIs taken.
— Compare to activity partitions.

= Controller should only specify inputs ard
outputs for camera and disk behaviors.



Encapsulating Behaviors

Model
(M1)
Camera&DiskController
- Camera : Disk
Location
: Choose . . Store&Backup
 Take — < Subject : Finish |€&——
: : Back
Picture _ acxup
| ’ . Store
/ - TakePicture Picture : Store&Backup

= External behavior properties (operations)
— Types only “expose” inputs and outputs.
— Have same executions (equal values) as
Internal behavior properties (methods). s

= (Not ports)



External Behaviors

L —>
Generalization Class [<I—
Metamodel >
(M2) JAN Behavior
Surface
Implements Behavior —> -
A ) !
\ ! |
\ |
b TakePicture :
N
Model \~~____4 !
(M1) !
TakePicture
stepl: Focus —>| step2: Shoot
) ) )
| | : : :
Things Being TakingPicl TakingPic?2 TakingPic3
Modeled (MO) 3/15/09 2pmET : 4/19/09 1amET : 2/5/10 8pmET :
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Operations

owned
Property
Propert Class <|— Behavior
Metamodel 7| berty yP§
7 ANEEG
(M2) ,° 4& |
/ I
/ |
/ - type Surface
I Operation > Behavior :
|
: R AN !
1 ] '
‘; I I I
\ Camera I _ :
v / TakePicture :
\
Model 4 :
(M1) tp: Take | = I
Picture
TakePicture
] tps : .
yy - Tf;kePlcture N
| \ \ |
1 N A3 1
|

N SN e L

. . ~ ~1ips
Things Being ——— = TakingPic1l
Modeled (MO) Mary’sCam l: — =~ 315/09 2pmET :




Behavior Invocation

Controller : Object

: Camera : TakePicture&Store : Disk
Location Picture
MOdeI ‘ Picture ’
M1 : CallTake : CallStore
(M1) - . >
Picture Picture &Backup
> <
[ : Take + . g [
. Location : Store&
Picture ‘L Backup
. : Finish
: ChooseSubject

= “Calls” are behaviors that constrain

surrounding successions and item flows.
— Specify whether to wait for return

(synchronous/asynchronous calls).
— Have no steps (“no-ops”).
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Specializing Methods

Camera

tp : TakePicture

A\

JAN

CameraA

tp : TakelnfraredPicture

= Not OO “overriding”:

tps :
TakePicture

Mps
TakePicture

TakePicture

~

TakePicture

A\

Takelnfrared
Picture

— Specialized methods cannot remove inherited
elements, only specialize them.
— Use general methods for commonality among

Implementations
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OO View of Interactions

= Objects support interactions by
providing “services” (including data).
— UML added services required of other

objects.

= Object models (classes) typically do
not specify the interactions they
support.
— Only services “surfaced” to the outside.

— Except for UML’s protocol state
machines.
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OO & Interaction Approaches

Object Object
A A
( \ ( \
Ports Ports
& Interfaces & Interfaces
—A— —r
) !
,,*"'"‘A < ‘1' < T A”"‘~~\
1 > >
) < \
Y Y
Object . Y / \ Y / Object
Participant Role Participant Role
\ )
Y 41
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Protocols for Using Operations

= Protocol:

— Power must be turnec
— Multiple pictures can
— Power must be turnec

1S taken.

Camera

: PowerOn

- TakePicture

'\/O'X/

. PowerOff

on before taking picture.
e taken.

off after the last picture
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Model
(M1)

Protocol as Interaction

CameraTakePicture : Interaction

callPowerOn :

: CallPowerOn

<
- PowerOn \l/
Location
< <
. Take _
Picture Plct’ure

|

callPowerOff :

<

[

I

[

|

I

I

[

|

: CallTakePicture |
I

[

|

I

I

: CallPowerOff |
|

. PowerOff
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Protocol as Interaction (M2)

| Connector |

Metamodel protocal . .
(M2) Class N Interaction Succession Item Flow
I
I |
x A N
: : : Succession Flow
I | I A
I | I '
[ I [ )
I | | I
: : CameraTakePict:Jre
I Ml - l ===
I I caIIPowerOn 1 ,
I
Model protocol controller :
(M1) Camera >

D

|

|

I |
|

1 Locat|on :

I device I

I : Camera Picture .

|

I |

I |
[

|

D< call PowerOff
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Using Interaction Protocols

SLRPhotography : Interaction

o e o o o = - o
- e o o o o o .

cam : : I photographer : |

: SLRCamera ‘\ : Person :

Model A
(M1)

Q=" & —_—

$< callPowerOn : 1
|

| |
Location
device D( ‘1' < 1‘
: Camera Picture
>
! \’
Lle
— — — — J _____

callPowerOff :
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OO Interfaces

. |
Generalization S Class : .
Behavior properties
MetamOdel 4 4 are all operations.
(M2) .
Provides / Surface
Realizes Class
A A
]
1
: I
Camera I D‘ Camera
A - : PowerOn
Model _ : PowerOn
(M1) |
- TakePicture

= Could use as interaction participant types.

N TakePicture

"N PowerOff

: PowerOff




: PowerOn

Model
(M1)

OO Protocols

Camera

. HappensBefore

: HappensBefore

<

. Happens

Before

. Happens

Before

: TakePicture

. PowerOff

= Defined without external objects.
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Conjugation

CameraOperator

«required»
- CallPowerOn

«required»
: CallTakePicture

«required»
. CallPowerOff

= UML required operations = service
requests sent to external objects.
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OO Inputs and Outputs

Metamodel
(M2)
L — ownedProperty
Generalization | S| Class <F— T >
A ] inputPropert;
/0 only. ™ Behavior @ >R.Property
outputProperty| \
Surface o—- \
Implements Behavior —[> = / % \}I\l
A AN i /
\\ | \\ ii\ - | ¢///
N ' AU ocation
.o TakePicture “ \§resu§
Model ~~____~—_ ZF || Picture
(M1) !
TakePicture
"subject : > stepl: Focus p—>{ step2: Shoot > Aresult -
Location Picture
I\ A\ A\
1 1 1
. - | 1 | =======%
Things Being TakingPicl TakingPic2 TakingPic3 | | M property at tail of
Modeled (MO) 3/15/09 2pmET : | | 4/19/09 1amET : 2/5/10 8DMET = | Jioperty at head of

the arrow.
*Not instance links*




Multiple OO Interfaces

SLRPhotography : Interaction

o e o o o = - o

cam : . I photographer : |
: SLRCamera : Person

CameraTP
operations
: PowerOn
:TakePicture
:PowerOff

Camera {>.

CameraDE

D operations

: Download
: Erase

= Connector uses both Iinterfaces or one?
—If one, which? .



Port for Each OO Interface

SLRPhotography : Interaction

o e o o o = - o
- e o o o o o .

: ! I photographer : |
! | - CameraTP :___Pe_rs_orl__l
I cam : 1

I SLRCamera : _________
: : printer : Person :
| [ . CameraDE | o e e — |

— o o e o o )

= Typed by interfaces, not operations.

= Raises guestions:
— Are ports separate from objects they’'re on?

— If separate, are they internal or external parts?
—Tied up an entire SysML RTF. >



Multiple Interaction Protocols

SLRPhotography : Interaction

Model
(M1)

Person

cam :
SLRCamera

= Connectors typed by different interactions.
— Ports not needed. 53



Multiple Ports for Same Interface

SLRPhotography : Interaction

o e o o o = - o
- e o o o o o .

: I photographer : |
1

| Ttp-photo: | _ _ Person

I cam : I CameraTP

I SLRCamera | L o o
I l I 1
I : Tp-test . tester : Person
' CameraTP === ===== !

— o o e o o )

= Object can interact differently based on
port used.
— Better to define with separate interactions.

= |f same interaction, use correlation (BPMN).
= Not possible with interaction protocols. *
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Summary

= Unify OO behavior using
— Properties for operations and methods
— Inheritance for “overriding” methods.

= Simplify protocol modeling with
— Interactions instead of OO interfaces & ports.

= Speeds learning and analysis integration.
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More Information

= |ntro to Behavior as Composite Structure
— http://doc.omg.org/ad/2018-03-02

= |nteraction as Composite Structure
— http://doc.omg.org/ad/18-06-11

= Additional slides

— Starts with onto, includes interactions.

— http://conradbock.org/bock-ontoloqgical-behavior-
modeling-|pl-slides.pdf

= Paper: http://dx.doi.org/10.5381/j0t.2011.10.1.a3
= Application to BPMN:http://conradbock.org/#BPDM
= KerML: Contact Chas Galey charles.e.qaley@Imcdcom
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