-
i

Object-orientation as Composite

Structure:
(Onto)Logical Object-orientation

Conrad Bock,
U.S. National Institute of Standards and Technology

Charles Galey
Lockheed Martin

NIST

Motional Institute of Standards and Technology

Overview

= RoadMap

= Motivation
— Behavior, review
— Interactions, review
— OO behavior, requirements

= OO Behavior Solution
1. Behavior encapsulation

2. Behavior inheritance
3. Protocols (interaction and OO)

= Summary

Behavior as Composite Structure
Presentation Stack

Onto Interactions | Onto OO
(ad/18-06-11) | (this one)

Onto Behavior Basics
(ad/2018-03-02)

Overview

= RoadMap

= Motivation
— Behavior, review
— Interactions, review
— OO behavior, requirements

= OO Behavior Solution
1. Behavior encapsulation
2. Behavior inheritance
3. Protocols (interaction and OO)

= Summary

General Problem

= UML has three behavior diagrams.
— Activity, state, interaction.
= Very little integration or reuse between
them.
— Three underlying metamodels.
— Three representations of temporal order.

= Triples the effort of learning UML and
building analysis tools for It.

General Solution

= Treat behaviors as assemblies of
other behaviors.

— Like objects are assemblies of other
objects.

= Assembly = UML internal structure
— Pleces represented by properties.
— Put together by connectors.

= Put all behavior diagrams on the
same underlying behavior assembly
model.

Behaviors as Composite Structure

act PreventLockup [Activity Diagram])

Propert
/ perty

sd ABS_Activatio/Sequence [Sequence Diagram])

v

Property

on oe
e d1:Traction ml:Brake
j Detector Modulator
1]
Connector g 1

detTrkLos()

Activity I<:|
Pro pe rty \ SendSignal()

modBrkFrc(traction_signal:boolean)
>

stm TireTracti(}\[State Diagram|) modBrkFre()

\1, (—LossOfTractionﬂ
sendAck()
Gripping J (Slipping J <
; j 71 .

LRegainTraction—) Interaction
i/

Connector / State Machine Connector

-

Behavior: What’s Being Modeled?

Real,

Simulated, Focus

or Desired 3/15/09 10-11amET :
Things Being ————

akePicture
MOdeIed (MO) 3/15/09 10-12pmET :
Not instance Shoot
3/15/0911-12pmET :

specs.

= “Things” that occur In time
— Eg, taking a picture, focusing, etc.
— Not “behaviors”, “actions”, etc.

Behavior: What's in Common?

Standard ;
Model Library § Mappens Behavior happens
Beforel s Occurrence IDuring
(M1) A A
| |
I |
| |
I happens
SR 5 Focus
Things Being TakePicture 3/15/09 10-11amET :
Modeled (MO) 3/15/09 10-12pmET : happe”SBefore\l,
> Shoot
happens| 3/15/0911-12pmET :
During-!

= They happen before or during each

other.
— Construct M1 library for this.
— Use it to classify things being modeled. °

Behavior: Use Library

Standard)
Model Librar happens Behavior happens
y Before L Occurrence During-
(M1) <
? {subsets}
TakePicture
User Model
~ : HappensBefore
(M1) stepl: Focus > step2: Shoot
7
- N 7
| /
I |
]
‘\ — 1) Focus
Thi Bei \ 3/15/09 10-11amET :
INgs Being TakePicture N
H Bef
Modeled (MO) 3/15/09 10-12pmMET : AN dRECNsBC Ore\l,
step2
> Shoot
3/15/0911-12pmET :

= Specialize library classes and
subset/redefine library properties. v

Behavior: Too repetitive at M1?

type
l type Association él gwned t
onnector
Metamodel v oowned ole
perty
(M2) Class [| Property Connector
4 4 4 %edefines) 4
ownedStep fromStep
Behavior ; Step Succession
> toStep
A e A
] / '
] V4 -
I' TakePicture
User Model ; 7
M1 X HappensBefore//
(M1) stepl: Focus > step2: Shoot
o7
A K¢
1
I
| D
Things Being b - 1> Focus
Modeled (MO \ 3/15/09 10-11amET :
odeled (MO) TakePicture AR HappensBefore\l/
3/15/09 10-12pmET : Nteno
step
Shoot
3/15/0911-12pmET :

= Capture M1 patterns in M2 elements.
— Tools apply patterns automatically.

11

Overview

= RoadMap

= Motivation
— Behavior, review
— Interactions, review
— OO behavior, requirements

= OO Behavior Solution
1. Behavior encapsulation
2. Behavior inheritance
3. Protocols (interaction and OO)

= Summary

12

Interactions Problem

act PreventLockup [Activity Diagram])

sd ABS_ActivationSequence)
Modulate
BrakingForce
—_ _TraiLusi — d1:Traction m1l:Brake
Detector Modulator
I]
Object _ H
FI ow detTrkLos()
Activity
sendSignal()
ibd [Elock] Anti-Lock Cortroller [Basic U modBrkFrc(traction_signal:boolean>)-
modBrkFrc()
d1 : Traction
*7| Detector
sendAck()
=R 4
<€
=
m : Brake ! !
Modulator

Interaction

SysML Internal Message

Block Diagram

ltem Flow
13

Interactions Requirements

1. Between things that outlive interactions.
— Objects have many interactions over time.
— Not just between steps in an activity.

2. Interactions are reusable and composable.

— The same kind of interaction might be used In
many user models and

— contain many other interactions ordered in time.

3. Interacting objects have “mailboxes”.

— Things being exchanged leave and arrive at
specified places in the interacting objects.

— Aka, output/inputs.

14

Transfers (M1)

Behavior ol D
Occurrence oS
AN
Standard ZF {Q *
Model Library 3 targetThin%. Any
- . Thing

sourceThln%.

Model franster transferredThing

(M1) >
4 {redefines}? [1*] ? /l\ /l\
| |
transferredThing | 1
User Model < Product Transfer >| Product | | I
I 1
N /:\ I I
1 | 1 |
l transferredThing 1 : :
Things >| Stove234: : ,
Being Product Transfer sourceThing I :
Modeled 3/15/09 10-12pmET : >| Store6s4: | |
(|\/|O) targetThing '

>

John’sHouse:

Interactions (M2)

owned
Class [® Property
*
% {subsets%
. iNnvolvesS<=
<«
Behavior | A Property S \\erty
% ',,' {subsets} * \\\\
I participant AN
Metamodel e TR A ..
(M2) Interaction ! N AN
/typeofT ||ngTransferred NN N
" > CIaS\\l N\
N
AN I ’ A N\ \\\\\\
1 ‘{\ 1 2 \\\
~] \ l \\\ \\\
. \ > | \
Behavior v ol i i
invo ves
Occurrence x ////5’ ///5’
Standard ZF tavses A
Model Library 7 targetThm L
sourceThln 17~ |7
Transfer == T —______
Model I B >
transferredThing |~ M1 property at tail of
(Ml) arrow is value of M2
*
) Z} {redeﬁnes}zr [1..4] [F {Jhrggfrr(tjx\//vét head of
transferredThing *Not instance links*
User Model < Product Transfer >| Product 16
-

Transfers Along Connectors?

act PreventLockup [Activity Diagram])

JiL Property
Property I /
¥ ctloss sd ABS_Activat%Sequence)
/_ _TraiLusi — d1l:Traction m1:Brake
Detector Modulator
Connector — g 1
detTrkLos()
Activity T
Pro P el”[y — ;n(lj&gnalo
ibd [Block] An’[i-LDEWn’[rnller[Basic U modBrkFrc(traction_signaI:boolean>)-
11 : Traction modBrkFrc()
I.'l.etectur
o sendAck()
A 4 L
mi1 : Brake H / !
Modulator)
/ / Interaction
Connector - SysML Internal Connector

Block Diagram

= Connectors are typed by associations.
— But transfers are behaviors.

Interaction = Behavior & Association

= Associlations and behaviors both have
objects that participate in them.
— Associations link their participants.

— Behaviors involve their objects.
 Interactions have lifelines.
e Activities have object nodes, partitions, etc.
 Behaviors have parameters.

= [nteractions are behaviors that are also
associations between their participants.

18

Links (M1) & Associations (M2)

owned
Propert
Class [@® L
Metamodel A {)? Property
(M2) | — participant
1 | Association |0 Property
|
! 0 NN
| A —— [y ——
- ' G i =======>
Standard ”_H- M1 property at tail of
; < : linkedThing | Link arrow is value of M2
Model Library Anything (non-u/\uel A\ oroperty at head of
2. - the arrow.
Model ~ 4 - oubsets) ! ? *Not instance links*
- I
(Ml) conCam —/;’
-7 Camera i Controls
User Model = < ~ < |linkedc |/ Camera {redefines linkedTarget }
: Controller camCon linkedCon’ Controller {redefines linkedSource}
- I A
| 1
. . l . I .
Things Being fcamera 34 [kedCam | jng 251 ; | linkedCenf cnr) 12
Modeled (MO) -
conCam1‘ / 1‘camCon

19

Transfers as Links 1)

linkedThing
{non-unique}
Link
-) et [2..7]
Standard | Behavior infolves
Model Library Occurrence [Ap A &

Z} Any
targetThing Thing
sourceThin

Model Transfer %
(Ml) transferredThing
transferredThing : :
User Model < Product Transfer >| Product | | I
I I
N ':\ I I
1 | 1 |
' transferredThing 1 : :
Things > Stove234: [=~ |
Being Product Transfer sourceThing . !
o
Modeled 3/15/09 10-12pmET : > Store6s4: | |
(MO) targetThing I
> John’'sHouse:

20

Interaction Participants (M2)

... participant
Association [@ ” Property typeOfThingT
{redefines}
, | involves should be on
Behavior (@— //”— %‘“operty
I §§
% I;I ? \%% }
d L AN T T TTTe
Metamodel T | oo e vaineor
. N, N\
(M2) Interaction . N « | M2 property at head
type”'fThlngTransferred SN \| of the arrow.
~ l\l\ CI‘XR\\S I_*Not instance links*
\\\ \\\\ \‘\\\\
~ ; \\\\ \‘\\\\ \\\\
) I linkedThing T \
Link [T \ \
[2..%] ‘ I
| h . {subsets} I ; //I"l }}
infrolves /
Standard : OBe avior A
. 7
Model Library < Loccurrence |AN A S0
| 4 ¢/£</ y//// !
] H ,4’¢ - 7 %
targetThm%%/ Thidg /
=7 7
=== //
sourceThing=‘/ W/
Model Transfer 7
(M1) transferredThingl/‘/
- 4 Zr [1..%] ZF
{redefines}|
transferredThing 21
User Model = Product Transfer >| Product

Connectors Reusing Interactions

owned
Propert
Rt zi;p L Property Class
{subsets}
Metamodel conowned o type T
(M2) Class (@ —1 Connector 2| Association
{SUbSmS}[ﬁ 4 %edefines} 4
< OV\: Flow —>| Interaction
A =
I)
U Model DeliverProduct : ‘I
ser vioae
I
. t . ProductT f)
(M1) pickupFrom : e ro/\uc ——— 13 deliverTo:
I
A I
1 |
. QickllgFrom
“ S| Store654:
Things Being Product Delivery del} rerTo
\) . .
Modeled (MO) 3/15/09 9-1pmET : >l JehnsHouse: Stove234:
\m transferredThing
)| Product Transfer

3/15/09 10-12pmET :

22

Flow Steps

type
< q < type .
Class pronory| Property |role | Connector ——>| Association
roperty A
{redefines}
|
Metamodel 4 o 0Wnedstep arlierStep 4 :
(M2) Behavior < * Succession :
type I
z AN .
. %redefines} 1 ‘ |
Interaction |€— Flow / | I
A pe A I | |
: 1 1
' ! + | I
-]
CapturePicture b ’I : happens |/_|_
_______ I Y I I Before
i I et | | I)
|fentl : Flight , confirmation 2 fdb : Flight | | ! Behavior
Model 1 control ! -7 Database ! | Occurrence
[S —— - e
: Happens !
(Ml) FETTT T 1 Before / 4
I ScC: [/-l
Command p : Spacecratft : T Picture P 7 Transfer
——————— -
: HappensBefore \ Y /
Standard
User Model Model Library

Flows & Out/Inputs (OF)

typeOfThing

Flowing

M1 property at tail of
arrow is value of M2

property at head of

the arrow.
Not instance links

Connector
[1..*] {ordered, Class
Flow 4_ non-unique}
ltem sourceQutputPropert

Metamodel Flow i [1..*] {ordered,

"'l non-unique} Property
(M2) I

i tgrgetlnputProperty>

Il \

oo [1..*] {ordered,

! \ non-unique}

—

I;I \\\\
Model Takef/icture\ Activity

// \

M1 / AN
(M1) stepl: Focus |/ p—— —]step2 : Shoot
out xrsl : Exposure//l Exposure *Tin xfs: Exposure
N
I
TakePicture 3/15/09 10-12pmET :
Instances ist_eu st_erﬁI
(MO) Focus Occ 1: -ExposureTransfer | shoot Occ 1
out xrsl = Exp123 sl & in xfs = Expl123

24

Flows & Out/Inputs (FP)

typeOfThing

Transferred Class
[1..*] {ordered,
non-unique}
Metamodel ltem sourceOutputPropert == >
1..*] {ordered, M1 property at tail of
M2 Flow A [ord property
(M2) \Q\ non-uniquel | property arrow is value of M2
tar\\\etlnputProperty property at head of
A % (1. {ordered> the arrow.
A non-unique} *Not instance links*
:’:” \\\\\\
I \
CaptijrePicttye : Interaction
m_—_——_—_—_——=——=——= . r=-Emmmm—mm—mmm—_—m—_—— 1
Model Ifcntl : Flight Control !/ Conflrmatlo Se fdb Flight Database
:in confRec: Confirmation’i < Wout confSend : Confirmation!
(M1) | reenResCon L L ourcontgend Confirmao ;
Command I Spacecraft ' Picture

25

Overview

= RoadMap

= Motivation
— Behavior, review
— Interactions, review
— OO behavior, requirements
= OO Behavior Solution
1. Behavior encapsulation
2. Behavior inheritance
3. Protocols (interaction and OO)

= Summary

26

OO Problems in UML/SysML

= Encapsulated and “surfaced” behaviors
modeled differently.

— Namespace ownership for encapsulated
behaviors (methods).

— Operations for surfaced behaviors.

= Method specialization (“override”)
doesn’t use generalization / inheritance.

27

OO Problems in UML/SysML

= Interfaces (service “bundles”)

— Missing supported interactions.

 Expected order of operation calls, signal receipts,
flowing property values.

— Redundantly specified on both ends of
Interactions (eg, conjugation).
— Need ports to distinguish interfaces uses.

— Redundant model of behavior abstraction

o Specify input/outputs of surfaced behaviors (ie,
they abstract those behaviors).

 But UML interface realization not generalization.28

OO Requirements

1. Behavior encapsulation
—“Surfaced” behaviors (no steps)

2. Behavior inheritance

3. Protocols

— Expected order of using surfaced
behaviors.

29

Overview

= RoadMap

= Motivation
— Behavior, review
— Interactions, review
— OO behavior, requirements

= OO Behavior Solution
1. Behavior encapsulation
2. Behavior inheritance
3. Protocols (interaction and OO)

= Summary

30

Properties of Objects
for Behavior Occurrences

Camera

. TakePic&Bkup

Model : Choose

: Backup
(M1) Subject
. : Happens
* Location /I\ Before
- Take Picture
Picture > - Store

= Values of these properties are executions

(occurrences, MO instances) of behaviors.
= For example, classifier behavior executions’

Connecting Behavior Occurrence
Properties Across Objects

Camera&DiskController

. Camera § : Disk
Model ~ |: choose . .
(M) ke < Subject . Finish [€—=— : Backup
Picture Picture 1\
> : Store

= Behaviors not encapsulated.
— Controller specifies “how” picture iIs taken.
— Compare to activity partitions.

= Controller should only specify inputs ard
outputs for camera and disk behaviors.

Encapsulating Behaviors

Model
(M1)
Camera&DiskController
- Camera : Disk
Location
: Choose . . Store&Backup
 Take — < Subject : Finish |€&——
: : Back
Picture _ acxup
| ’ . Store
/ - TakePicture Picture : Store&Backup

= External behavior properties (operations)
— Types only “expose” inputs and outputs.
— Have same executions (equal values) as
Internal behavior properties (methods). s

= (Not ports)

External Behaviors

L —>
Generalization Class [<I—
Metamodel >
(M2) JAN Behavior
Surface
Implements Behavior —> -
A) !
\ ! |
\ |
b TakePicture :
N
Model \~~____4 !
(M1) !
TakePicture
stepl: Focus —>| step2: Shoot
)))
| | : : :
Things Being TakingPicl TakingPic?2 TakingPic3
Modeled (MO) 3/15/09 2pmET : 4/19/09 1amET : 2/5/10 8pmET :

34

Operations

owned
Property
Propert Class <|— Behavior
Metamodel 7| berty yP§
7 ANEEG
(M2) ,° 4& |
/ I
/ |
/ - type Surface
I Operation > Behavior :
|
: R AN !
1] '
‘; I I I
\ Camera I _ :
v / TakePicture :
\
Model 4 :
(M1) tp: Take | = I
Picture
TakePicture
] tps : .
yy - Tf;kePlcture N
| \ \ |
1 N A3 1
|

N SN e L

. . ~ ~1ips
Things Being ——— = TakingPic1l
Modeled (MO) Mary’sCam l: — =~ 315/09 2pmET :

Behavior Invocation

Controller : Object

: Camera : TakePicture&Store : Disk
Location Picture
MOdeI ‘ Picture ’
M1 : CallTake : CallStore
(M1) - . >
Picture Picture &Backup
> <
[: Take + . g [
. Location : Store&
Picture ‘L Backup
. : Finish
: ChooseSubject

= “Calls” are behaviors that constrain

surrounding successions and item flows.
— Specify whether to wait for return

(synchronous/asynchronous calls).
— Have no steps (“no-ops”).

36

Overview

= RoadMap

= Motivation
— Behavior, review
— Interactions, review
— OO behavior, requirements

= OO Behavior Solution
1. Behavior encapsulation

2. Behavior inheritance
3. Protocols (interaction and OO)

= Summary

37

Specializing Methods

Camera

tp : TakePicture

A\

JAN

CameraA

tp : TakelnfraredPicture

= Not OO “overriding”:

tps :
TakePicture

Mps
TakePicture

TakePicture

~

TakePicture

A\

Takelnfrared
Picture

— Specialized methods cannot remove inherited
elements, only specialize them.
— Use general methods for commonality among

Implementations

38

Overview

= RoadMap

= Motivation
— Behavior, review
— Interactions, review
— OO behavior, requirements

= OO Behavior Solution
1. Behavior encapsulation
2. Behavior inheritance
3. Protocols (interaction and O0)

= Summary

39

OO View of Interactions

= Objects support interactions by
providing “services” (including data).
— UML added services required of other

objects.

= Object models (classes) typically do
not specify the interactions they
support.
— Only services “surfaced” to the outside.

— Except for UML’s protocol state
machines.

40

OO & Interaction Approaches

Object Object
A A
(\ (\
Ports Ports
& Interfaces & Interfaces
—A— —r
) !
,,*"'"‘A < ‘1' < T A”"‘~~\
1 > >
) < \
Y Y
Object . Y / \ Y / Object
Participant Role Participant Role
\)
Y 41

Interaction

Protocols for Using Operations

= Protocol:

— Power must be turnec
— Multiple pictures can
— Power must be turnec

1S taken.

Camera

: PowerOn

- TakePicture

'\/O'X/

. PowerOff

on before taking picture.
e taken.

off after the last picture

42

Model
(M1)

Protocol as Interaction

CameraTakePicture : Interaction

callPowerOn :

: CallPowerOn

<
- PowerOn \l/
Location
< <
. Take _
Picture Plct’ure

|

callPowerOff :

<

[

I

[

|

I

I

[

|

: CallTakePicture |
I

[

|

I

I

: CallPowerOff |
|

. PowerOff

43

Protocol as Interaction (M2)

| Connector |

Metamodel protocal . .
(M2) Class N Interaction Succession Item Flow
I
I |
x A N
: : : Succession Flow
I | I A
I | I '
[I [)
I | | I
: : CameraTakePict:Jre
I Ml - l ===
I I caIIPowerOn 1 ,
I
Model protocol controller :
(M1) Camera >

D

|

|

I |
|

1 Locat|on :

I device I

I : Camera Picture .

|

I |

I |
[

|

D< call PowerOff

44

Using Interaction Protocols

SLRPhotography : Interaction

o e o o o = - o
- e o o o o o .

cam : : I photographer : |

: SLRCamera ‘\ : Person :

Model A
(M1)

Q=" & —_—

$< callPowerOn : 1
|

| |
Location
device D(‘1' < 1‘
: Camera Picture
>
! \’
Lle
— — — — J _____

callPowerOff :

Overview

= RoadMap

= Motivation
— Behavior, review
— Interactions, review
— OO behavior, requirements

= OO Behavior Solution
1. Behavior encapsulation
2. Behavior inheritance
3. Protocols (interaction and OO)

= Summary

46

OO Interfaces

. |
Generalization S Class : .
Behavior properties
MetamOdel 4 4 are all operations.
(M2) .
Provides / Surface
Realizes Class
A A
]
1
: I
Camera I D‘ Camera
A - : PowerOn
Model _ : PowerOn
(M1) |
- TakePicture

= Could use as interaction participant types.

N TakePicture

"N PowerOff

: PowerOff

: PowerOn

Model
(M1)

OO Protocols

Camera

. HappensBefore

: HappensBefore

<

. Happens

Before

. Happens

Before

: TakePicture

. PowerOff

= Defined without external objects.

48

Conjugation

CameraOperator

«required»
- CallPowerOn

«required»
: CallTakePicture

«required»
. CallPowerOff

= UML required operations = service
requests sent to external objects.

49

OO Inputs and Outputs

Metamodel
(M2)
L — ownedProperty
Generalization | S| Class <F— T >
A] inputPropert;
/0 only. ™ Behavior @ >R.Property
outputProperty| \
Surface o—- \
Implements Behavior —[> = / % \}I\l
A AN i /
\\ | \\ ii\ - | ¢///
N ' AU ocation
.o TakePicture “ \§resu§
Model ~~____~—_ ZF || Picture
(M1) !
TakePicture
"subject : > stepl: Focus p—>{ step2: Shoot > Aresult -
Location Picture
I\ A\ A\
1 1 1
. - | 1 | =======%
Things Being TakingPicl TakingPic2 TakingPic3 | | M property at tail of
Modeled (MO) 3/15/09 2pmET : | | 4/19/09 1amET : 2/5/10 8DMET = | Jioperty at head of

the arrow.
Not instance links

Multiple OO Interfaces

SLRPhotography : Interaction

o e o o o = - o

cam : . I photographer : |
: SLRCamera : Person

CameraTP
operations
: PowerOn
:TakePicture
:PowerOff

Camera {>.

CameraDE

D operations

: Download
: Erase

= Connector uses both Iinterfaces or one?
—If one, which? .

Port for Each OO Interface

SLRPhotography : Interaction

o e o o o = - o
- e o o o o o .

: ! I photographer : |
! | - CameraTP :___Pe_rs_orl__l
I cam : 1

I SLRCamera : _________
: : printer : Person :
| [. CameraDE | o e e — |

— o o e o o)

= Typed by interfaces, not operations.

= Raises guestions:
— Are ports separate from objects they’'re on?

— If separate, are they internal or external parts?
—Tied up an entire SysML RTF. >

Multiple Interaction Protocols

SLRPhotography : Interaction

Model
(M1)

Person

cam :
SLRCamera

= Connectors typed by different interactions.
— Ports not needed. 53

Multiple Ports for Same Interface

SLRPhotography : Interaction

o e o o o = - o
- e o o o o o .

: I photographer : |
1

| Ttp-photo: | _ _ Person

I cam : I CameraTP

I SLRCamera | L o o
I l I 1
I : Tp-test . tester : Person
' CameraTP === ===== !

— o o e o o)

= Object can interact differently based on
port used.
— Better to define with separate interactions.

= |f same interaction, use correlation (BPMN).
= Not possible with interaction protocols. *

Overview

= RoadMap

= Motivation
— Behavior, review
— Interactions, review
— OO behavior, requirements

= OO Behavior Solution
1. Behavior encapsulation
2. Behavior inheritance
3. Protocols (interaction and OO)

= Summary

55

Summary

= Unify OO behavior using
— Properties for operations and methods
— Inheritance for “overriding” methods.

= Simplify protocol modeling with
— Interactions instead of OO interfaces & ports.

= Speeds learning and analysis integration.

56

More Information

= |ntro to Behavior as Composite Structure
— http://doc.omg.org/ad/2018-03-02

= |nteraction as Composite Structure
— http://doc.omg.org/ad/18-06-11

= Additional slides

— Starts with onto, includes interactions.

— http://conradbock.org/bock-ontoloqgical-behavior-
modeling-|pl-slides.pdf

= Paper: http://dx.doi.org/10.5381/j0t.2011.10.1.a3
= Application to BPMN:http://conradbock.org/#BPDM
= KerML: Contact Chas Galey charles.e.qaley@Imcdcom

http://doc.omg.org/ad/2018-03-02
http://doc.omg.org/ad/18-06-11
http://conradbock.org/bock-ontological-behavior-modeling-jpl-slides.pdf
http://dx.doi.org/10.5381/jot.2011.10.1.a3
http://conradbock.org/#BPDM
mailto:charles.e.galey@lmco.com

	Object-orientation as Composite Structure:�(Onto)Logical Object-orientation
	Overview
	Behavior as Composite Structure Presentation Stack

	Behavior Review
	General Problem
	General Solution
	Behaviors as Composite Structure
	Behavior: What’s Being Modeled?
	Behavior: What’s in Common?
	Behavior: Use Library
	Behavior: Too repetitive at M1?

	Interactions Review
	Interactions Problem
	Interactions Requirements
	Transfers (M1)
	Interactions (M2)
	Transfers Along Connectors?
	Interaction = Behavior & Association
	Links (M1) & Associations (M2)
	Transfers as Links (M1)
	Interaction Participants (M2)
	Connectors Reusing Interactions
	Flow Steps
	Flows & Out/Inputs (OF)
	Flows & Out/Inputs (FP)

	OO Behavior, Requirements
	OO Problems in UML/SysML
	OO Problems in UML/SysML
	OO Requirements

	OO Behavior, Solution
	OO Behavior, Encapsulation
	Properties of Objects�for Behavior Occurrences
	Connecting Behavior Occurrence Properties Across Objects
	Encapsulating Behaviors
	External Behaviors
	Operations
	Behavior Invocation

	OO Behavior, Inheritance
	Specializing Methods

	Protocols
	OO and Interaction Compared
	OO View of Interactions
	OO & Interaction Approaches

	Interaction Protocols
	Protocols for Using Operations
	Protocol as Interaction
	Protocol as Interaction (M2)
	Using Interaction Protocols

	OO Protocols
	OO Interfaces
	OO Protocols
	Conjugation
	OO Inputs and Outputs
	Multiple OO Interfaces
	Port for Each OO Interface
	Multiple Interaction Protocols
	Multiple Ports for Same Interface

	Summary
	More Information

